OPTIMALLY ACCURATE PETROV-GALERKIN METHOD OF FINITE ELEMENTS

被引:0
|
作者
M.Stojanovió
机构
[1] University of Novi Sad
[2] Yugoslavia
关键词
exp; OPTIMALLY ACCURATE PETROV-GALERKIN METHOD OF FINITE ELEMENTS; APPI; Pi; 一几;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
We perform analysis for a finite elements method applied to the singular self-adjoint problem.This method uses continuous piecewise polynomial spaces for the trial and the test spaces.We fit the trial polynomial space by piecewise exponentials and we apply so exponentially fitted Galerkin method to singular self-adjomt problem by approximating driving terms by Lagrange piecewise polynomials,linear,quadratic and cubic.Wt measure the erroe in max norm.We show that method is optimal of the first order in the error estimate,We also give numerical results for the Galerkin approximation.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 50 条
  • [41] A direct coupling method of meshless local petrov-galerkin (MLPG) and finite element method (FEM)
    Liu, Zehui
    Lu, Ming
    Li, Qing
    Lv, Zhongbin
    Chang, Afei
    Pang, Kai
    Zhao, Shujie
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2016, 51 (01) : 51 - 59
  • [42] Immersed-interface finite element method based on a nonconformal Petrov-Galerkin formulation
    Patil, Mayuresh J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (15) : 3824 - 3844
  • [43] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [44] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203
  • [45] Error analysis of Petrov-Galerkin immersed finite element methods
    He, Cuiyu
    Zhang, Shun
    Zhang, Xu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [46] Meshless Local Petrov-Galerkin (MLPG) mixed finite difference method for solid mechanics
    Center for Aerospace Research and Education, University of California, Irvine, CA
    不详
    CMES Comput. Model. Eng. Sci., 2006, 1 (1-16):
  • [47] A Bilinear Petrov-Galerkin Finite Element Method for Solving Elliptic Equation with Discontinuous Coefficients
    Wang, Liqun
    Hou, Songming
    Shi, Liwei
    Zhang, Ping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (01) : 216 - 240
  • [48] DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV-GALERKIN METHOD
    Li, Xiang
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1021 - 1044
  • [49] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [50] PETROV-GALERKIN FINITE-ELEMENT MODEL FOR COMPRESSIBLE FLOWS
    BRUECKNER, FP
    HEINRICH, JC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (02) : 255 - 274