The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer

被引:0
|
作者
胡隐樵
左洪超
机构
[1] China Meteorological Administration
[2] Chinese Academy of Sciences
[3] Cold and Arid Regions Environmental and Engineering Research Institute
[4] Lanzhou730000 Institute of Arid Meteorology
[5] Lanzhou730020
关键词
linear thermodynamics; turbulent transportation; cross coupling; atmospheric boundary layer; heterogeneous underlying surface;
D O I
暂无
中图分类号
P432 [大气运动学];
学科分类号
摘要
Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity’s vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the divergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer. Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameteri
引用
收藏
页码:794 / 798
页数:5
相关论文
共 50 条
  • [21] THE LUMP STRUCTURE OF TURBULENT FIELD IN ATMOSPHERIC BOUNDARY LAYER
    周明煜
    吕乃平
    陈炎涓
    李诗明
    Science China Mathematics, 1981, (12) : 1705 - 1716
  • [22] Simulation of atmospheric turbulent boundary layer in a wind tunnel
    Sekishita, Nobumasa
    Makita, Hideharu
    Ichigo, Masayuki
    Fujita, Tadasuke
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (665): : 55 - 62
  • [23] Specifics of Sounding the Atmospheric Boundary Layer with a Turbulent Lidar
    I. A. Razenkov
    Atmospheric and Oceanic Optics, 2020, 33 : 610 - 615
  • [24] On parametrization of vertical turbulent exchange in atmospheric boundary layer
    Voloshchuk, V.M.
    Kupriyanchuk, A.I.
    Lev, T.D.
    Meteorologiya i Gidrologiya, 1992, (03): : 5 - 15
  • [25] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Andrey A. Grachev
    Edgar L Andreas
    Christopher W. Fairall
    Peter S. Guest
    P. Ola G. Persson
    Boundary-Layer Meteorology, 2007, 125 : 329 - 341
  • [26] THE LUMP STRUCTURE OF TURBULENT FIELD IN ATMOSPHERIC BOUNDARY LAYER
    周明煜
    吕乃平
    陈炎涓
    李诗明
    ScienceinChina,SerA., 1981, Ser.A.1981 (12) : 1705 - 1716
  • [27] Study on the Influence of the Operation of Multiple Wind Turbines on the Turbulent Kinetic Energy in the Atmospheric Boundary Layer
    Li, Fei
    Lu, Ting-ting
    Wu, Zheng-ren
    PROCEEDINGS OF THE 2ND 2016 INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT (ICSD 2016), 2017, 94 : 304 - 307
  • [28] The Turbulent Structure and Diurnal Growth of the Saharan Atmospheric Boundary Layer
    Garcia-Carreras, L.
    Parker, D. J.
    Marsham, J. H.
    Rosenberg, P. D.
    Brooks, I. M.
    Lock, A. P.
    Marenco, F.
    McQuaid, J. B.
    Hobby, M.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (02) : 693 - 713
  • [29] Turbulent flux events in a nearly neutral atmospheric boundary layer
    Narasimha, Roddam
    Kumar, S. Rudra
    Prabhu, A.
    Kailas, S. V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1852): : 841 - 858
  • [30] A LABORATORY MODEL OF TURBULENT CONVECTION IN THE ATMOSPHERIC BOUNDARY-LAYER
    CENEDESE, A
    QUERZOLI, G
    ATMOSPHERIC ENVIRONMENT, 1994, 28 (11) : 1901 - 1913