NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES

被引:0
|
作者
霍元极
万哲先
机构
[1] Zhangjiakou Teachers College
[2] Hebei 075028
[3] Beijing 100080
[4] PRC
[5] Institute of Systems Science
[6] Academia Sinica
关键词
symmetric matrices; association scheme; intersection number;
D O I
暂无
中图分类号
学科分类号
摘要
constant whenever (x, y)∈Rk. This constant is denoted by p~k. Then we call X=(X,{Ri}) and association scheme of class d on X. The non-negative integers p~k are called the intersection numbers of X.
引用
收藏
页码:1501 / 1505
页数:5
相关论文
共 50 条
  • [21] Generalizations of Oja's learning rule to non-symmetric matrices
    Hasan, Mohammed A.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 1779 - 1782
  • [22] NUMERICAL-METHOD FOR EIGENREDUCTION OF NON-SYMMETRIC REAL MATRICES
    JOHNSEN, TL
    COMPUTERS & STRUCTURES, 1978, 8 (3-4) : 399 - 402
  • [23] Symmetric and strongly symmetric homeomorphisms on the real line with non-symmetric inversion
    Wei, Huaying
    Matsuzaki, Katsuhiko
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [24] Symmetric and strongly symmetric homeomorphisms on the real line with non-symmetric inversion
    Huaying Wei
    Katsuhiko Matsuzaki
    Analysis and Mathematical Physics, 2021, 11
  • [25] On a class of non-symmetric diffusions containing fully non-symmetric distorted Brownian motions
    Trutnau, G
    FORUM MATHEMATICUM, 2003, 15 (03) : 409 - 437
  • [26] Symmetric And Non-Symmetric Muonic Helium Atoms Studies
    Mohammadi, S.
    FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS (FINUSTAR 3), 2011, 1377 : 398 - 401
  • [27] Symmetric and non-symmetric chiral liquid crystal dimers
    Donaldson, T.
    Staesche, H.
    Lu, Z. B.
    Henderson, P. A.
    Achard, M. F.
    Imrie, C. T.
    LIQUID CRYSTALS, 2010, 37 (08) : 1097 - 1110
  • [28] Soliton dynamics in symmetric and non-symmetric complex potentials
    Kominis, Yannis
    OPTICS COMMUNICATIONS, 2015, 334 : 265 - 272
  • [29] Symmetric Jack polynomials from non-symmetric theory
    T. H. Baker
    P. J. Forrester
    Annals of Combinatorics, 1999, 3 (2-4) : 159 - 170
  • [30] CONJOINED TWINS - SYMMETRIC AND NON-SYMMETRIC (PARASITIC) FORMS
    WERNER, JP
    BOHM, N
    HELWIG, H
    SCHROTER, W
    KLINISCHE PADIATRIE, 1978, 190 (04): : 365 - 371