Maximal function characterizations of Hardy spaces on RD-spaces and their applications

被引:0
|
作者
Loukas GRAFAKOS [1 ]
机构
[1] Department of Mathematics, University of Missouri
基金
美国国家科学基金会;
关键词
space of homogeneous type; Caldero′n reproducing formula; space of test function; maximal function; Hardy space; atom; Littlewood-Paley function; sublinear operator; quasi- Banach space;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a "dimension" n. For α∈ (0, ∞) denote by Hαp(X ), Hdp(X ), and H?,p(X ) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calder′on reproducing formula, it is shown that all these Hardy spaces coincide with Lp(X ) when p ∈ (1, ∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H*,p(X ) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1), 1], it is proved that the space H?,p(X ), the Hardy space Hp(X ) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman and Weiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from Hp(X ) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
引用
收藏
页码:2253 / 2284
页数:32
相关论文
共 50 条
  • [1] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Grafakos, Loukas
    Liu, LiGuang
    Yang, DaChun
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12): : 2253 - 2284
  • [2] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Loukas Grafakos
    LiGuang Liu
    DaChun Yang
    [J]. Science in China Series A: Mathematics, 2008, 51
  • [3] Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Dachun Yang
    Yuan Zhou
    [J]. Mathematische Annalen, 2010, 346 : 307 - 333
  • [4] Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Yang, Dachun
    Zhou, Yuan
    [J]. MATHEMATISCHE ANNALEN, 2010, 346 (02) : 307 - 333
  • [5] RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS FOR HARDY SPACES ON RD-SPACES
    Grafakos, Loukas
    Liu, Liguang
    Yang, Dachun
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 225 - 251
  • [6] Hardy spaces with variable exponents on RD-spaces and applications
    Zhuo, Ciqiang
    Sawano, Yoshihiro
    Yang, Dachun
    [J]. DISSERTATIONES MATHEMATICAE, 2016, (520) : 1 - 74
  • [7] Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications
    The Anh Bui
    Xuan Thinh Duong
    Fu Ken Ly
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (08)
  • [8] Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms
    Yang, Dachun
    Zhou, Yuan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 622 - 635
  • [9] Maximal function characterizations for variable Hardy spaces on spaces of homogeneous typeMaximal function characterizations for variable Hardy spacesY. He
    Yao He
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2025, 48 (2)
  • [10] Maximal Function Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 59 - 70