A Modified Binomial Tree Method for Currency Lookback Options

被引:0
|
作者
Min Dai Institute of Mathematics
机构
基金
美国国家科学基金会;
关键词
Modified binomial tree method; Currency lookback options; Convergence;
D O I
暂无
中图分类号
O211.67 [期望与预测];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The binomial tree method is the most popular numerical approach to pricing options.However,for currency lookback options,this method is not consistent with the corresponding continuousmodels,which leads to slow speed of convergence.On the basis of the PDE approach,we developa consistent numerical scheme called the modified binomial tree method.It possesses one order ofaccuracy and its efficiency is demonstrated by numerical experiments.The convergence proofs are alsoproduced in terms of numerical analysis and the notion of viscosity solution.
引用
收藏
页码:445 / 454
页数:10
相关论文
共 50 条
  • [21] Quanto lookback options
    Dai, M
    Wong, HY
    Kwok, YK
    [J]. MATHEMATICAL FINANCE, 2004, 14 (03) : 445 - 467
  • [22] On the rate of convergence of the binomial tree scheme for American options
    Liang, Jin
    Hu, Bei
    Jiang, Lishang
    Bian, Baojun
    [J]. NUMERISCHE MATHEMATIK, 2007, 107 (02) : 333 - 352
  • [23] A fast numerical method for the valuation of American lookback put options
    Song, Haiming
    Zhang, Qi
    Zhang, Ran
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 27 (1-3) : 302 - 313
  • [24] PATH DEPENDENT OPTIONS - THE CASE OF LOOKBACK OPTIONS
    CONZE, A
    VISWANATHAN
    [J]. JOURNAL OF FINANCE, 1991, 46 (05): : 1893 - 1907
  • [25] American options with lookback payoff
    Dai, M
    Kwok, YK
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 66 (01) : 206 - 227
  • [26] Simulation of European Lookback Options
    Aboulaich, R.
    Alami Idrissi, A.
    Lamarti Sefian, M.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2012, 28 (04): : 101 - 117
  • [27] Canonical Distribution, Implied Binomial Tree, and the Pricing of American Options
    Liu, Qiang
    Guo, Shuxin
    [J]. JOURNAL OF FUTURES MARKETS, 2013, 33 (02) : 183 - 198
  • [28] Randomized Binomial Tree and Pricing of American-Style Options
    Hu Xiaoping
    Cao Jie
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [29] Dynamic Programming in the Binomial Tree Structures for Real Options Analysis
    Targiel, Krzysztof S.
    [J]. 2015 6TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION, AND APPLIED OPTIMIZATION (ICMSAO), 2015,
  • [30] Spectral binomial tree: New algorithms for pricing barrier options
    Muroi, Yoshifumi
    Yamada, Takashi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 249 : 107 - 119