Theta Series and Trace Formula for Jacobi Forms

被引:0
|
作者
李云峰 [1 ]
机构
[1] Department of Mathematics University of Science and Technology of China Hefei 230026 PRC
关键词
Jacobi form; theta series; Siegel modular form; trace formula;
D O I
暂无
中图分类号
学科分类号
摘要
1 Introduction Jacobi forms are the generalization of Jacobi theta series and the coefficients of the Fourier-Jacobi expansion of a Siegel modular form. The theory develops systematically in recent years and has many interesting applications in theory of modular forms and number theory.
引用
收藏
页码:1150 / 1153
页数:4
相关论文
共 50 条
  • [21] Trace formula for a perturbed operator of Jacobi type
    Neumoina, E. A.
    [J]. DIFFERENTIAL EQUATIONS, 2014, 50 (01) : 33 - 38
  • [22] Trace formula for a perturbed operator of Jacobi type
    E. A. Neumoina
    [J]. Differential Equations, 2014, 50 : 33 - 38
  • [23] Universal mock theta functions as quantum Jacobi forms
    Carroll, Greg
    Corbett, James
    Folsom, Amanda
    Thieu, Ellie
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2019, 6 (01)
  • [24] PERIODS OF MODULAR-FORMS AND JACOBI THETA FUNCTIONS
    ZAGIER, D
    [J]. INVENTIONES MATHEMATICAE, 1991, 104 (03) : 449 - 465
  • [25] Universal mock theta functions as quantum Jacobi forms
    Greg Carroll
    James Corbett
    Amanda Folsom
    Ellie Thieu
    [J]. Research in the Mathematical Sciences, 2019, 6
  • [26] Generators of Jacobi forms are Poincare series
    Richter, Olav K.
    Skogman, Howard
    [J]. RAMANUJAN JOURNAL, 2018, 45 (03): : 639 - 645
  • [27] Generators of Jacobi forms are Poincaré series
    Olav K. Richter
    Howard Skogman
    [J]. The Ramanujan Journal, 2018, 45 : 639 - 645
  • [28] Transcendence of Jacobi's theta series and related results
    Duverney, D
    Nishioka, K
    Nishioka, K
    Shiokawa, I
    [J]. NUMBER THEORY: DIOPHANTINE, COMPUTATIONAL AND ALGEBRAIC ASPECTS, 1998, : 157 - 168
  • [29] The Jacobi form DL, theta functions, and Eisenstein series
    Bayad, Abdelmejid
    Robert, Gilles
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2016, 28 (01): : 75 - 88
  • [30] REMARK ON JACOBI'S THETA FUNCTIONS AND DIRICHLET SERIES
    Fujisawa, Yusuke
    Nakamura, Hisanobu
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (02): : 33 - 41