Functional inequalities on manifolds with non-convex boundary

被引:0
|
作者
Lijuan Cheng [1 ,2 ]
Anton Thalmaier [1 ]
James Thompson [1 ]
机构
[1] Mathematics Research Unit, University of Luxembourg
[2] Department of Applied Mathematics, Zhejiang University of Technology
基金
中国国家自然科学基金;
关键词
Ricci curvature; gradient inequality; log-Sobolev inequality; geometric flow;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this article, new curvature conditions are introduced to establish functional inequalities including gradient estimates, Harnack inequalities and transportation-cost inequalities on manifolds with non-convex boundary.
引用
收藏
页码:1421 / 1436
页数:16
相关论文
共 50 条
  • [31] On the minimization of a tikhonov functional with a non-convex sparsity constraint
    Ramlau, R. (ronny.ramlau@jku.at), 1600, Kent State University (39):
  • [32] Projection Method Approach for General Regularized Non-convex Variational Inequalities
    Balooee, Javad
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 192 - 209
  • [33] Gap inequalities for non-convex mixed-integer quadratic programs
    DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
    不详
    Oper Res Lett, 5 (297-300):
  • [34] Projection Method Approach for General Regularized Non-convex Variational Inequalities
    Javad Balooee
    Journal of Optimization Theory and Applications, 2013, 159 : 192 - 209
  • [35] Gap inequalities for non-convex mixed-integer quadratic programs
    Galli, Laura
    Kaparis, Konstantinos
    Letchford, Adam N.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 297 - 300
  • [36] Penalty boundary sequential convex programming algorithm for non-convex optimal control problems
    Zhang, Zhe
    Jin, Gumin
    Li, Jianxun
    ISA TRANSACTIONS, 2018, 72 : 229 - 244
  • [37] NON-CONVEX DUALITY
    EKELAND, I
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1979, MEM (60): : 45 - 55
  • [38] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [39] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92
  • [40] Comments on convex and non-convex figures
    Tietze, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1929, 160 (1/4): : 67 - 69