EXPONENTIAL FITTED METHODS FOR THE NUMEMCAL SOLUTION OF THE SCHRDINGER EQUATION

被引:0
|
作者
T.E. Simos(Laboratory of Applied Mathematics and Computers
机构
关键词
exp; DINGER EQUATION; EXPONENTIAL FITTED METHODS FOR THE NUMEMCAL SOLUTION OF THE SCHR; ACC;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
A new sixth-order Runge-Kutta type method is developed for the numericalintegration of the radial Schrodinger equation and of the coupled differential equa-tions of the Schrodinger type. The formula developed contains certain free pa-rameters which allows it to be fitted automatically to exponential functions. Wegive a comparative error analysis with other sixth order exponentially fitted meth-ods. The theoretical and numerical results indicate that the new method is moreaccurate than the other exponentially fitted methods.
引用
收藏
页码:120 / 134
页数:15
相关论文
共 50 条
  • [31] Analytic presentation of a solution of the Schrödinger equation
    E. Z. Liverts
    E. G. Drukarev
    R. Krivec
    V. B. Mandelzweig
    Few-Body Systems, 2008, 44 : 367 - 370
  • [32] A family of four-step trigonometrically-fitted methods and its application to the schrödinger equation
    T. E. Simos
    Journal of Mathematical Chemistry, 2008, 44 : 447 - 466
  • [33] A new methodology for the construction of numerical methods for the approximate solution of the Schrödinger equation
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    Journal of Mathematical Chemistry, 2009, 46 : 652 - 691
  • [34] A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    Journal of Mathematical Chemistry, 2009, 46 : 621 - 651
  • [35] Transformation Operator for the Schrödinger Equation with Additional Exponential Potential
    A. Kh. Khanmamedov
    M. F. Muradov
    Russian Mathematics, 2023, 67 : 68 - 75
  • [36] Symmetric Exponential Integrators with an Application to the Cubic Schrödinger Equation
    Elena Celledoni
    David Cohen
    Brynjulf Owren
    Foundations of Computational Mathematics, 2008, 8 : 303 - 317
  • [37] Exponential decay for the cubic Schrödinger equation on a dissipative waveguide
    Malloug, Mohamed
    APPLICABLE ANALYSIS, 2024, 103 (15) : 2759 - 2776
  • [38] Exponential Stabilization for the Nonlinear Schrödinger Equation with Localized Damping
    Fábio Natali
    Journal of Dynamical and Control Systems, 2015, 21 : 461 - 474
  • [39] On the Chern–Simons–Schr?dinger Equation with Critical Exponential Growth
    Si Tong CHEN
    Xian Hua TANG
    Shuai YUAN
    ActaMathematicaSinica,EnglishSeries, 2021, (12) : 1875 - 1895
  • [40] Schrödinger-type identity to the existence and uniqueness of a solution to the stationary Schrödinger equation
    Delin Sun
    Boundary Value Problems, 2019