Parabolic stable Higgs bundles over complete noncompact Riemann surfaces

被引:0
|
作者
李嘉禹
王友德
机构
基金
中国国家自然科学基金;
关键词
Higgs bundle; Hermitlan-Einstein metric; parabolic stability; Riemann surface;
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
Let M be an open Riemann surface with a finite set of punctures, a complete Poincar(?)-like metric is introduced near the punctures and the equivalence between the stability of an indecomposable parabolic Higgs bundle, and the existence of a Hermitian-Einstein metric on the bundle is established.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 50 条
  • [41] On moduli space of Higgs GO(m, C) bundles over a Riemann surface
    Pal, Sarbeswar
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2011, 26 (04) : 369 - 382
  • [42] Stable Higgs bundles over positive principal elliptic fibrations
    Biswas, Indranil
    Mj, Mahan
    Verbitsky, Misha
    COMPLEX MANIFOLDS, 2018, 5 (01): : 195 - 201
  • [43] ON THE TOPOLOGICAL THEORY OF SELF-DUAL CONNECTIONS OVER NONCOMPACT RIEMANN SURFACES
    MENDOZA, A
    RESTUCCIA, A
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (02) : 187 - 195
  • [44] Vanishing theorems for parabolic Higgs bundles
    Arapura, Donu
    Hao, Feng
    Li, Hongshan
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (05) : 1251 - 1279
  • [45] Bogomolov inequality for Higgs parabolic bundles
    B. Anchouche
    manuscripta mathematica, 1999, 100 : 423 - 436
  • [46] Variation of moduli of parabolic Higgs bundles
    Thaddeus, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 547 : 1 - 14
  • [47] Bogomolov inequality for Higgs parabolic bundles
    Anchouche, B
    MANUSCRIPTA MATHEMATICA, 1999, 100 (04) : 423 - 436
  • [48] On the motives of moduli of parabolic chains and parabolic Higgs bundles
    Do, Viet Cuong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [49] Line bundles on the moduli space of parabolic connections over a compact Riemann surface
    Singh, Anoop
    ADVANCES IN MATHEMATICS, 2022, 402
  • [50] Chen–Ruan cohomology and moduli spaces of parabolic bundles over a Riemann surface
    Indranil Biswas
    Pradeep Das
    Anoop Singh
    Proceedings - Mathematical Sciences, 2022, 132