A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil

被引:0
|
作者
Asma BEGUM [1 ]
Mounir LAROUSSI [2 ]
M. R. PERVEZ [3 ]
机构
[1] School of Engineering and Computer Science, Independent University,Dhaka, Bangladesh
[2] Department of Electrical and Computer Engineering, Old Dominion University,USA
关键词
plasma jet/bullet; bullet formation; dielectric barrier discharge; non-thermal atmospheric pressure plasma;
D O I
暂无
中图分类号
O53 [等离子体物理学]; O358 [射流];
学科分类号
070204 ;
摘要
To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet’s surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 1011cm-3 . If helium is used as a feeding gas, a minimum 1.48×10-8C charge is required per pulse in the gap discharge to generate a plasma jet.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [21] Patterns of plasma jet arrays in the gas flow field of non-thermal atmospheric pressure plasma jets
    Qaisrani, M. Hasnain
    Li, Congyun
    Pei Xuekai
    Khalid, M.
    Xian Yubin
    Lu Xinpei
    PHYSICS OF PLASMAS, 2019, 26 (01)
  • [22] The atmospheric pressure air plasma jet with a simple dielectric barrier
    Chen, Longwei
    Wei, Yu
    Zuo, Xiao
    Cong, Jie
    Meng, Yuedong
    THIN SOLID FILMS, 2012, 521 : 226 - 228
  • [23] Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure
    Schaefer, Jan
    Fricke, Katja
    Mika, Filip
    Pokorna, Zuzana
    Zajickova, Lenka
    Foest, Ruediger
    THIN SOLID FILMS, 2017, 630 : 71 - 78
  • [24] Non-thermal plasma treatment of contaminated surfaces: remote exposure to atmospheric pressure dielectric barrier discharge effluent
    Limam, Soukayna
    Kirkpatrick, Michael
    Odic, Emmanuel
    ADVANCES IN INNOVATIVE MATERIALS AND APPLICATIONS, 2011, 324 : 469 - 472
  • [25] Electrical and optical characteristics of cylindrical non-thermal atmospheric-pressure dielectric barrier discharge plasma sources
    Wu, Yui Lun
    Hong, Jungmi
    Ouyang, Zihao
    Cho, Tae S.
    Ruzic, D. N.
    SURFACE & COATINGS TECHNOLOGY, 2013, 234 : 100 - 103
  • [26] Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
    Liu Xiaohu
    Hong Feng
    Guo Ying
    Zhang Jing
    Shi Jianjun
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (05) : 439 - 442
  • [27] Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet
    刘小虎
    洪枫
    郭颖
    张菁
    石建军
    Plasma Science and Technology, 2013, 15 (05) : 439 - 442
  • [28] Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet
    常正实
    姚聪伟
    张冠军
    Plasma Science and Technology, 2016, 18 (01) : 17 - 22
  • [29] Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet
    常正实
    姚聪伟
    张冠军
    Plasma Science and Technology, 2016, (01) : 17 - 22
  • [30] Lipid Peroxidation of Escherichia coli by Triplet Non-thermal Atmospheric Pressure Plasma Jet
    Colagar, A. Hossienzadeh
    Alavi, O.
    Sohbatzadeh, F.
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (02): : 678 - 687