Study of a New Improved PSO-BP Neural Network Algorithm

被引:0
|
作者
Li Zhang [1 ]
Jia-Qiang Zhao [1 ]
Xu-Nan Zhang [2 ]
Sen-Lin Zhang [1 ]
机构
[1] School of Information,Liaoning University
[2] Department of Automation,Tsinghua University
基金
中国国家自然科学基金;
关键词
improved particle swarm optimization; inertia weight; learning factor; BP neural network; rolling bearings;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based on adaptive particle swarm optimization( PSO) algorithm. This algorithm adjusted the inertia weight coefficients and learning factors adaptively and therefore could be used to optimize the weights in the BP network. After establishing the improved PSO-BP( IPSO-BP) model,it was applied to solve fault diagnosis of rolling bearing. Wavelet denoising was selected to reduce the noise of the original vibration signals,and based on these vibration signals a wide set of features were used as the inputs in the neural network models. We demonstrate the effectiveness of the proposed approach by comparing with the traditional BP,PSO-BP and linear PSO-BP( LPSO-BP) algorithms. The experimental results show that IPSO-BP network outperforms other algorithms with faster convergence speed,lower errors,higher diagnostic accuracy and learning ability.
引用
收藏
页码:106 / 112
页数:7
相关论文
共 50 条
  • [41] Prediction method of surface settlement of rectangular pipe jacking tunnel based on improved PSO-BP neural network
    Hu, Da
    Hu, Yongjia
    Yi, Shun
    Liang, Xiaoqiang
    Li, Yongsuo
    Yang, Xian
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] Terahertz Nondestructive Testing Signal Recognition Based on PSO-BP Neural Network
    Jia Meihui
    Li Lijuan
    Ren Jiaojiao
    Gu Jian
    Zhang Dandan
    Zhang Jiyang
    Xiong Weihua
    ACTA PHOTONICA SINICA, 2021, 50 (09) : 185 - 194
  • [43] Temperature compensation method of laser gyroscope based on PSO-BP neural network
    Zhang W.
    Wang T.
    Wang L.
    Tao T.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2022, 30 (05): : 652 - 657
  • [44] The Wavelet and PSO-BP Neural Network Based Analysis of Financial Time Series
    Yang, He
    Zheng, Li
    PROCEEDINGS OF THE 6TH (2014) INTERNATIONAL CONFERENCE ON FINANCIAL RISK AND CORPORATE FINANCE MANAGEMENT, VOLS. I AND II, 2014, : 665 - 670
  • [45] Parameterization of Multi-Angle Shaker Based on PSO-BP Neural Network
    Zhang, Jinxia
    Wang, Yan
    Niu, Fusheng
    Zhang, Hongmei
    Li, Songyi
    Wang, Yanpeng
    MINERALS, 2023, 13 (07)
  • [46] Prediction method of surface settlement of rectangular pipe jacking tunnel based on improved PSO-BP neural network
    Da Hu
    Yongjia Hu
    Shun Yi
    Xiaoqiang Liang
    Yongsuo Li
    Xian Yang
    Scientific Reports, 13
  • [47] Prediction model of PSO-BP neural network on coliform amount in special food
    Deng, Yun
    Xiao, Hanjie
    Xu, Jianxin
    Wang, Hua
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (06) : 1154 - 1160
  • [48] A Fault Diagnosis Based On Combination Model Of VPRS And PSO-BP Neural Network
    XiaolingNiu
    Wang, Jun
    Ren, Zihui
    IAEDS15: INTERNATIONAL CONFERENCE IN APPLIED ENGINEERING AND MANAGEMENT, 2015, 46 : 319 - 324
  • [49] Pavement Roughness Detection Method Based on Smartphone and PSO-BP Neural Network
    Zhang, Jinxi
    Cao, Qianqian
    Ding, Yongjie
    13TH INTERNATIONAL CONFERENCE ON ROAD AND AIRFIELD PAVEMENT TECHNOLOGY 2023, 2023, : 883 - 893
  • [50] The BLDC Motor Model and the Control System Based on PSO-BP Neural Network
    Gao, Yinqiao
    Shu, Xiong
    2015 2nd International Conference on Education and Education Research (EER 2015), Pt 5, 2015, 9 : 281 - 286