Partial functional linear quantile regression

被引:0
|
作者
TANG QingGuo [1 ]
CHENG LongSheng [1 ]
机构
[1] School of Economics and Management, Nanjing University of Science and Technology
基金
中国国家自然科学基金;
关键词
partial functional linear quantile regression; quantile estimator; functional principal component analysis; convergence rate;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables.The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optimal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology.
引用
收藏
页码:2589 / 2608
页数:20
相关论文
共 50 条
  • [21] Bootstrap confidence bands and partial linear quantile regression
    Song, Song
    Ritov, Ya'acov
    Haerdle, Wolfgang K.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 244 - 262
  • [22] Partial functional linear regression
    Shin, Hyejin
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3405 - 3418
  • [23] Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions
    Zhu, Hanbing
    Li, Yehua
    Liu, Baisen
    Yao, Weixin
    Zhang, Riquan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 267 - 286
  • [24] Partial quantile regression
    Dodge, Yadolah
    Whittaker, Joe
    [J]. METRIKA, 2009, 70 (01) : 35 - 57
  • [25] Estimation in Partially Observed Functional Linear Quantile Regression
    XIAO Juxia
    XIE Tianfa
    ZHANG Zhongzhan
    [J]. Journal of Systems Science & Complexity, 2022, 35 (01) : 313 - 341
  • [26] PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS
    Zhang, Mengli
    Xue, Lan
    Tekwe, Carmen D.
    Bai, Yang
    Qu, Annie
    [J]. STATISTICA SINICA, 2023, 33 (03) : 2257 - 2280
  • [27] Estimation in Partially Observed Functional Linear Quantile Regression
    Juxia Xiao
    Tianfa Xie
    Zhongzhan Zhang
    [J]. Journal of Systems Science and Complexity, 2022, 35 : 313 - 341
  • [28] Partial quantile regression
    Yadolah Dodge
    Joe Whittaker
    [J]. Metrika, 2009, 70 : 35 - 57
  • [29] Estimation in Partially Observed Functional Linear Quantile Regression
    Xiao Juxia
    Xie Tianfa
    Zhang Zhongzhan
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (01) : 313 - 341
  • [30] Checking the adequacy of functional linear quantile regression model
    Shi, Gongming
    Du, Jiang
    Sun, Zhihua
    Zhang, Zhongzhan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 210 : 64 - 75