Deep Learning-Based AMP for Massive MIMO Detection

被引:0
|
作者
Yang Yang [1 ]
Shaoping Chen [1 ]
Xiqi Gao [2 ]
机构
[1] Hubei Key Laboratory of Intelligent Wireless Communications, South-Central Minzu University
[2] National Mobile Communications Research Laboratory, Southeast University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TN929.5 [移动通信]; TP18 [人工智能理论];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-complexity detectors play an essential role in massive multiple-input multiple-output(MIMO) transmissions. In this work, we discuss the perspectives of utilizing approximate message passing(AMP) algorithm to the detection of massive MIMO transmission. To this end, we need to efficiently reduce the divergence occurrence in AMP iterations and bridge the performance gap that AMP has from the optimum detector while making use of its advantage of low computational load. Our solution is to build a neural network to learn and optimize AMP detection with four groups of specifically designed learnable coefficients such that divergence rate and detection mean squared error(MSE) can be significantly reduced. Moreover, the proposed deep learning-based AMP has a much faster converging rate, and thus a much lower computational complexity than conventional AMP, providing an alternative solution for the massive MIMO detection. Extensive simulation experiments are provided to validate the advantages of the proposed deep learning-based AMP.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [1] Deep Learning-Based AMP for Massive MIMO Detection
    Yang, Yang
    Chen, Shaoping
    Gao, Xiqi
    CHINA COMMUNICATIONS, 2022, 19 (10) : 69 - 77
  • [2] Deep Learning-Based Robust Precoding for Massive MIMO
    Shi, Junchao
    Wang, Wenjin
    Yi, Xinping
    Gao, Xiqi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (11) : 7429 - 7443
  • [3] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [4] A Partial Learning-Based Detection Scheme for Massive MIMO
    Jia, Zefeng
    Cheng, Wenchi
    Zhang, Hailin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1137 - 1140
  • [5] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [6] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [7] Deep Learning-Based Channel Estimation for Massive MIMO Systems
    Chun, Chang-Jae
    Kang, Jae-Mo
    Kim, Il-Min
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1228 - 1231
  • [8] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath, Robert W.
    IEEE Access, 2022, 10 : 125509 - 125525
  • [9] On Deep Learning-based Massive MIMO Indoor User Localization
    Arnold, Maximilian
    Doerner, Sebastian
    Cammerer, Sebastian
    ten Brink, Stephan
    2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2018, : 256 - 260
  • [10] Deep Learning-Based Decision Region for MIMO Detection
    Faghani, Termeh
    Shojaeifard, Arman
    Wong, Kai-Kit
    Aghvami, A. Hamid
    2019 IEEE 30TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2019, : 1282 - 1286