DIFFERENTIAL SUBORDINATIONS AND α-CONVEX FUNCTIONS

被引:0
|
作者
Jacek DZIOK [1 ]
Ravinder Krishna RAINA [2 ]
Janusz SOKóL [3 ]
机构
[1] Department of Mathematics, Institute of Mathematics, University of Rzeszów,ul. Rejtana 16A, 35-310 Rzeszów, Poland
[2] M.P. University of Agriculture and Technology
[3] Department of Mathematics, Rzeszów University of Technology,Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
关键词
Univalent functions; starlike functions; subordination; Fibonacci numbers; tri sectrix of Maclaurin; conchoid of de Sluze;
D O I
暂无
中图分类号
O174.13 [凸函数、凸集理论];
学科分类号
070104 ;
摘要
This article presents some new results on the class SLMα of functions that are analytic in the open unit disc U = { z : | z | < 1 } satisfying the conditions that f (0) = 0, f’(0) = 1, and α(1 + (zf’’(z))/f’(z) + (1-α) (zf’(z))/f(z) ∈P(U)for all z ∈ U , where α is a real number and P(z) = (1 + τ2z2)/(1-τz-τ2z2) (z ∈ U ).The number τ = (1 -5(1/2))/2 is such that τ2 = 1 + τ . The class SLMα introduced by J. Dziok, R.K. Raina, and J. Sokó [3, Appl. Math. Comput. 218 (2011), 996 1002] is closely related to the classes of starlike and convex functions. The article deals with several ideas and techniques used in geometric function theory and differential subordinations theory.
引用
收藏
页码:609 / 620
页数:12
相关论文
共 50 条
  • [31] DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION STRUCTURE
    Murugusundaramoorthy, G.
    Magesh, N.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (02): : 83 - 96
  • [32] Differential subordinations and superordinations for analytic functions defined by Salagean integro-differential operator
    Pall-Szabo, Agnes Orsolya
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (04): : 477 - 486
  • [33] Differential Subordinations and Superordinations of Certain Meromorphic Functions associated with an Integral Operator
    Darwish, Hanan Elsayed
    Lashin, Abd Al-Monem Yousof
    Soileh, Soliman Mohammed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (03): : 625 - 639
  • [34] ON SOME DIFFERENTIAL SUBORDINATIONS
    Nunokawa, Mamoru
    Sokol, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 436 - 445
  • [35] APPLICATIONS OF FRACTIONAL DERIVATIVE ON A DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATORS FOR ANALYTIC FUNCTIONS ASSOCIATED WITH DIFFERENTIAL OPERATOR
    Wanas, Abbas Kareem
    Darus, Maslina
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (03): : 379 - 392
  • [36] F-Classes of Univalent Functions and F-Differential Subordinations
    José A. Antonino
    Sanford S. Miller
    Computational Methods and Function Theory, 2021, 21 : 179 - 197
  • [37] Differential subordinations for functions with positive real part using admissibility conditions
    Sharma, Meghna
    Kumar, Sushil
    Jain, Naveen Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (04)
  • [38] Univalence criteria for analytic functions obtained using fuzzy differential subordinations
    Oros, Georgia Irina
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1478 - 1491
  • [39] AN APPLICATION OF DIFFERENTIAL SUBORDINATIONS
    OBRADOVIC, M
    OWA, S
    MATHEMATISCHE NACHRICHTEN, 1990, 147 : 61 - 64
  • [40] Some differential subordinations and fuzzy differential subordinations using generalized integral operator
    Naik, Uday H.
    Shaikh, Raisa M.
    Gophane, Machchhindra T.
    Wanas, Abbas K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48): : 830 - 842