First order hyperbolic systems;
Discontinuous finite element method;
Convergence order estimate;
D O I:
暂无
中图分类号:
O175.27 [双曲型方程];
学科分类号:
070104 ;
摘要:
In this paper,a discontinuous finite element method for the positive and symmetric,first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzedby using linear triangle elements,and the O(h~2)-order optimal error estimates are derivedunder the assumption of strongly regular triangulation and the H~3-regularity for the exactsolutions.The convergence analysis is based on some superclose estimates of the interpolationapproximation.Finally,we discuss the Maxwell equations in a two-dimensionaldomain,and numerical experiments are given to validate the theoretical results.