Atomic structures and carrier dynamics of defects in a ZnGeP2 crystal

被引:0
|
作者
潘晓光 [1 ]
王勇政 [1 ]
白航鑫 [1 ]
任彩霞 [1 ]
彭江波 [1 ]
景芳丽 [1 ]
邱海龙 [1 ]
雷作涛 [2 ]
刘红军 [1 ]
杨春晖 [2 ]
胡章贵 [1 ]
吴以成 [1 ]
机构
[1] Tianjin Key Laboratory of Functional Crystal Materials,Institute of Functional Crystals,School of Materials Science and Engineering,Tianjin University of Technology
[2] Harbin Institute of Technology
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O771 [];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
ZnGeP2[ZGP) crystals have attracted tremendous attention for their applications as frequency conversion devices.Nevertheless,the existence of native point defects,including at the surface and in the bulk,lowers their laser-induced damage threshold by increasing their absorption and forming starting points of the damage,limiting their applications.Here,native point defects in a ZGP crystal are fully studied by the combination of high angle annular dark-field scanning transmission electron microscopy[HAADF-STEM) and optical measurements.The atomic structures of the native point defects of the Zn vacancy,P vacancy,and Ge-Zn antisite were directly obtained through an HAADF-STEM,and proved by photoluminescence[PL) spectra at 77 K.The carrier dynamics of these defects are further studied by ultrafast pump-probe spectroscopy,and the decay lifetimes of 180.49,346.73,and 322.82 ps are attributed to the donor Vp+→valence band maximum[VBM) recombination,donor Ge+Zn→VBM recombination,and donor–acceptor pair recombination of Vp+→V-Zn,respectively,which further confirms the assignment of the electron transitions.The diagrams for the energy bands and excited electron dynamics are established based on these ultrahigh spatial and temporal results.Our work is helpful for understanding the interaction mechanism between a ZGP crystal and ultrafast laser,doing good to the ZGP crystal growth and device fabrication.
引用
收藏
页码:96 / 104
页数:9
相关论文
共 50 条
  • [31] Growth and Characterizations of ZnGeP2 Crystal by a Vertical Bridgman Method
    Yang Denghui
    Zhao Beijun
    Zhu Shifu
    Chen Baojun
    He Zhiyu
    Cao Liqiang
    Chen Cheng
    Xie Hu
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (10) : 2368 - 2372
  • [32] Annealing and optical homogeneity of large ZnGeP2 single crystal
    Li-Qiang Cao
    Bei-Jun Zhao
    Shi-Fu Zhu
    Bao-Jun Chen
    Zhi-Yu He
    Deng-Hui Yang
    Hui Liu
    Hu Xie
    Rare Metals, 2022, 41 : 3214 - 3219
  • [33] Broadband frequency conversion of laser radiation in ZnGeP2 crystal
    Ionin, A. A.
    Kinyaevskii, I. O.
    Klimachev, Yu. M.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2014, 41 (08) : 222 - 225
  • [34] Broadband frequency conversion of laser radiation in ZnGeP2 crystal
    A. A. Ionin
    I. O. Kinyaevskii
    Yu. M. Klimachev
    Bulletin of the Lebedev Physics Institute, 2014, 41 : 222 - 225
  • [35] ZnGeP2 parametric amplifier
    Barnes, NP
    Murray, KE
    Jani, MG
    Schunemann, PG
    Pollak, TM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (01) : 232 - 238
  • [36] Influence of ZnGeP2 volumetric defects on the spectral characteristics in THz range
    Zinoviev, Mikhail M.
    Yudin, Nikolay N.
    Zhuravlyova, Yelena, V
    Podzyvalov, Sergey N.
    FOURTH INTERNATIONAL CONFERENCE ON TERAHERTZ AND MICROWAVE RADIATION: GENERATION, DETECTION, AND APPLICATIONS, 2020, 11582
  • [37] Laser damage threshold of single crystal ZnGeP2 at 2.05 μm
    Zawilski, KT
    Setzler, SD
    Schunemann, PG
    Pollak, TM
    Laser-Induced Damage in Optical Materials: 2005, 2005, 5991 : 99104 - 99104
  • [38] Subtraction of the CO2 laser radiation frequencies in a ZnGeP2 crystal
    Apollonov, V. V.
    Gribenyukov, A. I.
    Korotkova, V. V.
    Suzdal'tsev, A. G.
    1996, (26):
  • [39] A new single step process for synthesis and growth of ZnGeP2 crystal
    Wang, T. Y.
    Sivakumar, R.
    Rai, D. K.
    Hsu, W. T.
    Lan, C. W.
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2008, 39 (04): : 385 - 387
  • [40] Frequency Conversion of CO Laser Radiation in the ZnGeP2 Nonlinear Crystal
    Andreev, Yu. M.
    Ionin, A. A.
    Kinyaevskii, I. O.
    Klimachev, Yu. M.
    Kozlov, A. Yu.
    Kotkov, A. A.
    Lanskii, G. V.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2010, 37 (01) : 11 - 12