Fast Solvers of Fredholm Optimal Control Problems

被引:0
|
作者
Mario Annunziato [1 ]
Alfio Borzi [2 ,3 ]
机构
[1] Universita degli Studi di Salerno,Dipartimento di Matematica e Informatica,Via Ponte Don Melillo,84084 Fisciano(SA),Italia  2. Universita degli Studi del Sannio,Dipartimento e Facolta di Ingegneria,Pa
[2] Institutfr Mathematik und Wissenschaftliches Rechnen,Karl-Franzens-Universitt Graz,Heinrichstr.36,8010 Graz,Austria.
关键词
Optimal control theory; Fredholm integral equations of second kind; iterative methods;
D O I
暂无
中图分类号
O232 [最优控制];
学科分类号
摘要
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented.Existence and uniqueness of optimal solutions is proved. A collective Gauss-Seidel scheme and a multigrid scheme are discussed.Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
引用
收藏
页码:431 / 448
页数:18
相关论文
共 50 条
  • [21] Robust Iterative Solvers for Algebraic Systems Arising from Elliptic Optimal Control Problems
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 35 - 43
  • [22] Efficient solvers for multiharmonic eddy current optimal control problems with various constraints and their analysis
    Kolmbauer, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 1063 - 1094
  • [23] Optimal Transport: Fast Probabilistic Approximation with Exact Solvers
    Sommerfeld, Max
    Schrieber, Joern
    Zemel, Yoav
    Munk, Axel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [24] Optimal transport: Fast probabilistic approximation with exact solvers
    Sommerfeld, Max
    Schrieber, Jörn
    Zemel, Yoav
    Munk, Axel
    Journal of Machine Learning Research, 2019, 20
  • [25] Fast parallel direct solvers for coarse grid problems
    Tufo, HM
    Fischer, PF
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2001, 61 (02) : 151 - 177
  • [26] FAST NUMERICAL SOLVERS FOR SUBDIFFUSION PROBLEMS WITH SPATIAL INTERFACES
    Yu, Boyang
    Li, Yonghai
    Liu, Jiangguo
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 431 - 458
  • [27] Fast Solvers for Nonsmooth Optimization Problems in Phase Separation
    Kumar, Pawan
    PROCEEDINGS OF THE 2015 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2015, 5 : 589 - 594
  • [28] Fast iterative solvers for buoyancy driven flow problems
    Elman, Howard
    Mihajlovic, Milan
    Silvester, David
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3900 - 3914
  • [29] Fast isogeometric solvers for hyperbolic wave propagation problems
    Los, M.
    Behnoudfar, P.
    Paszynski, M.
    Calo, V. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (01) : 109 - 120
  • [30] Solving low frequency electromagnetic problems with fast solvers
    Chew, WC
    Jiang, LJ
    Chu, YH
    Liu, YA
    Li, MK
    Qian, ZG
    Xiong, J
    Sun, L
    EMC 2005: IEEE International Symposium on Electromagnetic Compatibility, Vols 1-3, Proceedings, 2005, : 811 - 816