Fast Solvers of Fredholm Optimal Control Problems

被引:0
|
作者
Mario Annunziato [1 ]
Alfio Borzi [2 ,3 ]
机构
[1] Universita degli Studi di Salerno,Dipartimento di Matematica e Informatica,Via Ponte Don Melillo,84084 Fisciano(SA),Italia  2. Universita degli Studi del Sannio,Dipartimento e Facolta di Ingegneria,Pa
[2] Institutfr Mathematik und Wissenschaftliches Rechnen,Karl-Franzens-Universitt Graz,Heinrichstr.36,8010 Graz,Austria.
关键词
Optimal control theory; Fredholm integral equations of second kind; iterative methods;
D O I
暂无
中图分类号
O232 [最优控制];
学科分类号
摘要
The formulation of optimal control problems governed by Fredholm integral equations of second kind and an efficient computational framework for solving these control problems is presented.Existence and uniqueness of optimal solutions is proved. A collective Gauss-Seidel scheme and a multigrid scheme are discussed.Optimal computational performance of these iterative schemes is proved by local Fourier analysis and demonstrated by results of numerical experiments.
引用
收藏
页码:431 / 448
页数:18
相关论文
共 50 条
  • [1] Fast Solvers of Fredholm Optimal Control Problems
    Annunziato, Mario
    Borzi, Alfio
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (04) : 431 - 448
  • [2] Fast solvers for optimal control problems from pattern formation
    Stoll, Martin
    Pearson, John W.
    Maini, Philip K.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 : 27 - 45
  • [3] Theory of Fredholm mappings and some optimal control problems
    Borisovich Y.G.
    Journal of Mathematical Sciences, 2001, 105 (2) : 1826 - 1838
  • [4] FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS
    Pearson, John W.
    Wathen, Andrew J.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 294 - 310
  • [5] Fast solvers for simulation, inversion, and control of wave propagation problems
    Borzi, Alfio
    Oosterlee, Cornelis W.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (04) : 539 - 540
  • [6] Numerical Scheme for Fredholm Integral Equations Optimal Control Problems
    Sanchooli, Mahmood
    Fard, Omid Solaymani
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 4284 - 4291
  • [7] Fast solvers for MDO problems
    Taasan, S
    MULTIDISCIPLINARY DESIGN OPTIMIZATION: STATE OF THE ART, 1997, : 227 - 239
  • [8] Existence in optimal control problems of certain Fredholm integral equations
    Roubícek, T
    Schmidt, WH
    CONTROL AND CYBERNETICS, 2001, 30 (03): : 303 - 322
  • [9] PRECONDITIONERS AND TENSOR PRODUCT SOLVERS FOR OPTIMAL CONTROL PROBLEMS FROM CHEMOTAXIS
    Dolgov, Sergey
    Pearson, John W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : B1228 - B1253
  • [10] Robust Discretization and Solvers for Elliptic Optimal Control Problems with Energy Regularization
    Langer, Ulrich
    Steinbach, Olaf
    Yang, Huidong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (01) : 97 - 111