Packing-type Measures of the Sample Paths of Fractional Brownian Motion

被引:0
|
作者
Zhen-long Chen~(1
机构
基金
中国国家自然科学基金;
关键词
Fractional Brownian motion; packing-type measure; image; graph; law of iterated logarithm; sojourn measure;
D O I
暂无
中图分类号
TB48 [包装工程];
学科分类号
0822 ;
摘要
Let Λ={λ} be an infinite increasing sequence of positive integers with λ→∞. Let X={X(t), t∈R~N} be a multi-parameter fractional Brownian motion of index α(0<α<1) in R~d. Subject to certain hypotheses, we prove that if N<ad, then there exist positive finite constants Kand Ksuch that, with unit probability, if and only if there exists γ>0 such that where φ(s)=s(loglog 1/s)~(N/(2α)), φ-pΛ(E) is the Packing-type measure of E, X([0, 1])~N is the image and GrX{[0, 1]~N)={(t, X(t));t∈[0, 1]~N} is the graph of X, respectively. We also establish liminf type laws of the iterated logarithm for the sojourn measure of X.
引用
收藏
页码:335 / 352
页数:18
相关论文
共 50 条
  • [31] Stochastic averaging for a type of fractional differential equations with multiplicative fractional Brownian motion
    Wang, Ruifang
    Xu, Yong
    Pei, Bin
    CHAOS, 2022, 32 (12)
  • [32] Reinsurance control in a model with liabilities of the fractional Brownian motion type
    Frangos, N. E.
    Vrontos, S. D.
    Yannacopoulos, A. N.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2007, 23 (05) : 403 - 428
  • [33] Fractional telegraph-type equations and hyperbolic Brownian motion
    D'Ovidio, Mirko
    Orsingher, Enzo
    Toaldo, Bruno
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 131 - 137
  • [34] On a Ogawa-type integral with application to the fractional Brownian motion
    Delgado, R
    Jolis, M
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2000, 18 (04) : 617 - 634
  • [35] On the maximum of a fractional Brownian motion
    Molchan, GM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 44 (01) : 97 - 102
  • [36] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215
  • [37] Sample size determination for group sequential test under fractional Brownian motion
    Lai, Dejian
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1957 - 1967
  • [38] LACUNARY FRACTIONAL BROWNIAN MOTION
    Clausel, Marianne
    ESAIM-PROBABILITY AND STATISTICS, 2012, 16 : 352 - 374
  • [39] On Brownian motion, simple paths, and loops
    Sapozhnikov, Artem
    Shiraishi, Daisuke
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 615 - 662
  • [40] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275