FRANCIS QL ALGORITHM FOR FINDING THE EIGENVALUES OF ANTI-SYMMETRIC MATRICES

被引:0
|
作者
蒋尔雄
Lam Peter C.B.
机构
[1] Department of Mathematics
[2] Fudan University
[3] Hong Kong Baptist College
[4] Hong Kong.
[5] Shanghai 200433
关键词
Convergence; Francis QL algorithm;
D O I
暂无
中图分类号
O241 [数值分析];
学科分类号
070102 ;
摘要
In this paper,we demonstrate that the double-shift QL algorithm for an irreducible anti-symmetric iridiagonal matrix with the shifts being two eigenvalues of the 2×2 matrix in the left upper corner of this matrix is convergent and the convergence rale of Ms kind of algorithm is generally cubic.
引用
收藏
页码:202 / 215
页数:14
相关论文
共 50 条
  • [41] USE OF THE LANCZOS METHOD FOR FINDING COMPLETE SETS OF EIGENVALUES OF LARGE SPARSE SYMMETRIC MATRICES
    EDWARDS, JT
    LICCIARDELLO, DC
    THOULESS, DJ
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1979, 23 (03): : 277 - 283
  • [42] Inertial Bone Conduction: Symmetric and Anti-Symmetric Components
    Namkeun Kim
    Kenji Homma
    Sunil Puria
    Journal of the Association for Research in Otolaryngology, 2011, 12 : 261 - 279
  • [43] Separable Symmetric Tensors and Separable Anti-symmetric Tensors
    Xu, Changqing
    Xu, Kaijie
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (04) : 1509 - 1523
  • [44] THE ANTI-SYMMETRIC GUE MINOR PROCESS
    Forrester, Peter J.
    Nordenstam, Eric
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (04) : 749 - 774
  • [45] Inertial Bone Conduction: Symmetric and Anti-Symmetric Components
    Kim, Namkeun
    Homma, Kenji
    Puria, Sunil
    JARO-JOURNAL OF THE ASSOCIATION FOR RESEARCH IN OTOLARYNGOLOGY, 2011, 12 (03): : 261 - 279
  • [46] Separable Symmetric Tensors and Separable Anti-symmetric Tensors
    Changqing Xu
    Kaijie Xu
    Communications on Applied Mathematics and Computation, 2023, 5 : 1509 - 1523
  • [47] ANTI-SYMMETRIC EXCHANGE INTERACTION IN MNSI
    NAKANISHI, O
    KATAOKA, M
    YANASE, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 31-4 (FEB) : 339 - 340
  • [48] On the concentration of eigenvalues of random symmetric matrices
    Noga Alon
    Michael Krivelevich
    Van H. Vu
    Israel Journal of Mathematics, 2002, 131 : 259 - 267
  • [49] THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES
    FUREDI, Z
    KOMLOS, J
    COMBINATORICA, 1981, 1 (03) : 233 - 241
  • [50] Real symmetric matrices with partitioned eigenvalues
    Weinstein, Madeleine
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 633 : 281 - 289