Flux Growth and Spectral Characterization of LiLa(MoO4)2 and Nd:LiLa(MoO4)2 Crystals

被引:0
|
作者
ZHANG Yang [1 ]
LI Jing [1 ]
JIANG Huaidong [1 ]
ZHAO Xian [1 ]
WANG Jiyang [1 ]
Robert BOUGHTON [2 ]
机构
[1] State Key Laboratory of Crystal Materials, Shandong University
[2] Department of Physics and Astronomy, Bowling Green State University
关键词
laser crystal; flux growth; electronic structure; spectral characterization;
D O I
暂无
中图分类号
O614.612 [];
学科分类号
摘要
LiLa(MoO4)2, and Nd:LiLa(MoO4)2 crystals were grown by a spontaneous nucleation method. The crystals obtained were characterized by X-ray powder diffraction, derivative differential thermal analysis, Fourier transform infrared spectroscopy, UV–visible diffuse reflectance spectroscopy, and fluorescence spectroscopy, respectively. The electronic structure of LiLa(MoO4)2 was calculated based on the density functional theory, indicating that it has a direct band gap of 2.57 e V. Theoretically, the band structure and density of states reveal that the optical properties of LiL a(MoO4)2 are mainly determined by the Mo 4d orbital.
引用
收藏
页码:59 / 62
页数:4
相关论文
共 50 条
  • [31] Sol-gel preparation and photoluminescence properties of LiLa(MoO4)2:Eu3+ phosphors
    Liao, Jinsheng
    You, Hangying
    Zhou, Dan
    Wen, He-rui
    Hong, Ruijin
    OPTICAL MATERIALS, 2012, 34 (08) : 1468 - 1472
  • [32] GD+3 EPR IN CSEU(MOO4)2 AND CSY(MOO4)2
    OTKO, AI
    ZVYAGIN, AI
    PELIKH, LN
    FIZIKA TVERDOGO TELA, 1972, 14 (11): : 3454 - &
  • [33] CD3+ EPR IN KY(MOO4)2 AND KLU(MOO4)2
    OTKO, AI
    PELIKH, LN
    FIZIKA TVERDOGO TELA, 1974, 16 (03): : 967 - 969
  • [34] Simulation of the NaGd(MoO4)2–NaEu(MoO4)2 and Na2Gd4(MoO4)7–Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method
    V. B. Dudnikova
    E. V. Zharikov
    N. N. Eremin
    Physics of the Solid State, 2019, 61 : 555 - 564
  • [35] Simple coating synthesis and enhanced luminescence behaviour of LiLa (MoO4)2:Eu3+@NaF
    Wang, Tianman
    Liu, Youmiao
    Wu, Xiaolin
    Yang, Liu
    Cao, Chenchen
    Liao, Sen
    Huang, Yingheng
    Zhang, Huaxin
    MATERIALS RESEARCH BULLETIN, 2018, 103 : 181 - 185
  • [36] Thermal expansion studies on Th(MoO4)2, Na2Th(MoO4)3 and Na4Th(MoO4)4
    Keskar, Meera
    Krishnan, K.
    Dahale, N. D.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 458 (1-2) : 104 - 108
  • [37] Simulation of the NaGd(MoO4)2-NaEu(MoO4)2 and Na2Gd4(MoO4)7-Na2Eu4(MoO4)7 Solid Solutions by the Interatomic Potential Method
    Dudnikova, V. B.
    Zharikov, E. V.
    Eremin, N. N.
    PHYSICS OF THE SOLID STATE, 2019, 61 (04) : 555 - 564
  • [38] HOPPING CONDUCTION IN NABI(MOO4)2 CRYSTALS
    KOLESNICHENKO, KA
    KORKIN, SZ
    KUDZIN, AY
    STOLPAKOVA, TM
    GONTARENKO, YV
    FIZIKA TVERDOGO TELA, 1991, 33 (03): : 751 - 754
  • [39] MAGNETIC PHASE-TRANSITION IN CSDY(MOO4)2 AND KDY(MOO4)2 CRYSTALS WITH STRONG ANISOTROPIC INTERACTION
    KHATSKO, EN
    CHERNY, AS
    FIZIKA NIZKIKH TEMPERATUR, 1985, 11 (05): : 540 - 543
  • [40] Photoelastic properties of NaBi(MoO4)2 crystals
    Krupych, Oleg
    Kushnirevych, Marian
    Mys, Oksana
    Vlokh, Rostyslav
    APPLIED OPTICS, 2015, 54 (16) : 5016 - 5023