Reflected solutions of backward stochastic differential equations driven by G-Brownian motion

被引:0
|
作者
Hanwu Li [1 ]
Shige Peng [1 ,2 ]
Abdoulaye Soumana Hima [3 ,4 ]
机构
[1] School of Mathematics, Shandong University
[2] Institut de Recherche Math′ematiques de Rennes, Université de Rennes 1
[3] Zhongtai Institute of Finance, Shandong University
[4] Département de Mathématiques, Université de Maradi
基金
中国国家自然科学基金;
关键词
G-expectation; reflected backward stochastic differential equations; obstacle problems for fully nonlinear PDEs;
D O I
暂无
中图分类号
O211.63 [随机微分方程];
学科分类号
摘要
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条