Some new conditions for generalized H-matrices

被引:0
|
作者
朱砾
刘建州
机构
[1] Xiangtan 411105
[2] Hunan Provice
[3] P.R.China
[4] School of Mathematics and Computational Science Xiangtan University
[5] Hunan Provicc
基金
中国国家自然科学基金;
关键词
H-matrix; generalized H-matrix; spcctral radius;
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
摘要
By using a continuous transition method of a matrix and the estimate for spectral radius of a sub-matrix etc.,decision methods for a generalized H-matrix under positive definite matrix conditions are researched.Some new sufficient conditions for generalized H-matrices are obtained.When a block matrix degenerates a point matrix, these conditions namely become sufficient conditions of H-matrix.
引用
收藏
页码:1495 / 1501
页数:7
相关论文
共 50 条
  • [31] A new characterization of M-matrices and H-matrices
    Spiteri, P
    BIT, 2003, 43 (05): : 1019 - 1032
  • [32] Some new error bounds for linear complementarity problems of H-matrices
    Li, Wen
    Zheng, Hua
    NUMERICAL ALGORITHMS, 2014, 67 (02) : 257 - 269
  • [33] A New Characterization of M-Matrices and H-Matrices
    Pierre Spiteri
    BIT Numerical Mathematics, 2003, 43 : 1019 - 1032
  • [34] A GENERALIZED SASSENFELD CRITERION AND ITS RELATION TO H-MATRICES
    Wihler, Thomas P.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 621 - 628
  • [35] NEW CRITERIA FOR H-MATRICES AND SPECTRAL DISTRIBUTION
    Han, Guichun
    Yuan, Xueshuai
    Gao, Huishuang
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (03): : 119 - 132
  • [36] New scaling criteria for H-matrices and applications
    Nedovic, Maja
    Arsic, Dunja
    AIMS MATHEMATICS, 2025, 10 (03): : 5071 - 5094
  • [37] Some properties on Schur complements of H-matrices and diagonally dominant matrices
    Liu, JZ
    Huang, YQ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 365 - 380
  • [38] ON GENERALIZED SCHUR COMPLEMENT OF NONSTRICTLY DIAGONALLY DOMINANT MATRICES AND GENERAL H-MATRICES
    Zhang, Cheng-Yi
    Zhu, Yan
    Luo, Shuanghua
    Li, Jicheng
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 801 - 814
  • [39] New criteria for H-matrices and spectral distribution
    2016, Politechnica University of Bucharest (78):
  • [40] New criteria for H-matrices and spectral distribution
    2016, Politechnica University of Bucharest (78):