THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS

被引:55
|
作者
Lu Shanzhen and Yang Dachun (Beijing Normal University
机构
关键词
BMO; II; THE CENTRAL BMO SPACES AND LITTLEWOOD-PALEY OPERATORS;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The authors give a characterization of central bounded mean oscillation space CBMO2(Rγ) in terms of the central Carleson measure. Using this character, the authors establish the CBMO2(Rγ)-boundedness for several classes of general Littlewood-Paley operators.
引用
收藏
页码:72 / 94
页数:23
相关论文
共 50 条
  • [21] LITTLEWOOD-PALEY OPERATORS AND MARCINKIEWICZ INTEGRAL ON GENERALIZED CAMPANATO SPACES
    Tan Changmei(Bejing Normal University
    ApproximationTheoryandItsApplications, 1995, (04) : 35 - 44
  • [22] The Commutators of Parameterized Littlewood-Paley Operators on Weighted Hardy Spaces
    Han, Yanyan
    Wang, Cuiling
    Wu, Huoxiong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (01)
  • [23] Multilinear Littlewood-Paley operators and commutators on weighted Hardy spaces
    Han, Yanyan
    Wen, Yongming
    Wu, Huoxiong
    Xue, Qingying
    ANALYSIS AND APPLICATIONS, 2025,
  • [24] Littlewood-Paley Operators on Spaces with Variable Exponent on Homogeneous Groups
    Dong Li Liu
    Ji Man Zhao
    Acta Mathematica Sinica, English Series, 2020, 36 : 535 - 558
  • [25] Littlewood-Paley operators with variable kernels
    Jiecheng Chen
    Yong Ding
    Dashan Fan
    Science in China Series A, 2006, 49 : 639 - 650
  • [26] Commutators of Littlewood-Paley Operators on Herz Spaces with Variable Exponent
    Hongbin Wang
    Yihong Wu
    Analysis in Theory and Applications, 2016, 32 (02) : 149 - 163
  • [27] Parametrized Littlewood-Paley operators on grand variable Herz spaces
    Wang, Liwei
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (04)
  • [28] Boundedness for Multilinear Littlewood-Paley Operators on Certain Hardy Spaces
    Liu, Lanzhe
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (03): : 315 - 328
  • [29] Littlewood-Paley functions and Sobolev spaces
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 273 - 297
  • [30] LITTLEWOOD-PALEY THEOREM IN THE BA SPACES
    MA, JG
    CHINESE SCIENCE BULLETIN, 1989, 34 (18): : 1507 - 1513