Integrability and Solutions of the(2+1)-dimensional Hunter–Saxton Equation

被引:0
|
作者
蔡红柳 [1 ]
屈长征 [1 ]
机构
[1] Center for Nonlinear Studies,Ningbo University
基金
中国国家自然科学基金;
关键词
Hunter–Saxton equation; singular solution; μ-Hunter–Saxton equation; peaked traveling wave solution;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper,the(2+1)-dimensional Hunter-Saxton equation is proposed and studied.It is shown that the(2+1)-dimensional Hunter–Saxton equation can be transformed to the Calogero–Bogoyavlenskii–Schiff equation by reciprocal transformations.Based on the Lax-pair of the Calogero–Bogoyavlenskii–Schiff equation,a non-isospectral Lax-pair of the(2+1)-dimensional Hunter–Saxton equation is derived.In addition,exact singular solutions with a finite number of corners are obtained.Furthermore,the(2+1)-dimensional μ-Hunter–Saxton equation is presented,and its exact peaked traveling wave solutions are derived.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 50 条
  • [41] Painleve analysis, integrability and exact solutions for a (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation
    Xu, Gui-Qiong
    Deng, Shu-Fang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (11):
  • [42] Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation
    Jingyi Chu
    Xin Chen
    Yaqing Liu
    Nonlinear Dynamics, 2024, 112 : 619 - 634
  • [43] Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Li, Chunhui
    Zhu, Mengkun
    Wang, Dan
    Zhang, Jinyu
    Wang, Xiaoli
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [44] Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation
    Chu, Jingyi
    Chen, Xin
    Liu, Yaqing
    NONLINEAR DYNAMICS, 2024, 112 (01) : 619 - 634
  • [45] Several Types of Similarity Solutions for the Hunter-Saxton Equation
    Mathew Baxter
    Robert A.Van Gorder
    Kuppalapalle Vajravelu
    CommunicationsinTheoreticalPhysics, 2015, 63 (06) : 675 - 681
  • [46] Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials
    Chunhui Li
    Mengkun Zhu
    Dan Wang
    Jinyu Zhang
    Xiaoli Wang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [47] A Lipschitz metric for α-dissipative solutions to the Hunter-Saxton equation
    Grunert, Katrin
    Tandy, Matthew
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 5 (04):
  • [48] REGULARITY STRUCTURE OF CONSERVATIVE SOLUTIONS TO THE HUNTER-SAXTON EQUATION
    Gao, Yu
    Liu, Hao
    Wong, Tak Kwong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 423 - 452
  • [49] Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation
    Yan, Hui
    Tian, Shou-Fu
    Feng, Lian-Li
    Zhang, Tian-Tian
    WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (04) : 444 - 457
  • [50] Global Weak Solutions for the Weakly Dissipative μ-Hunter–Saxton Equation
    J. Liu
    Ukrainian Mathematical Journal, 2014, 65 : 1217 - 1230