Free Cyclic Actions on Surfaces and the Borsuk–Ulam Theorem

被引:0
|
作者
Daciberg Lima GON?ALVES [1 ]
John GUASCHI [2 ]
Vinicius Casteluber LAASS [3 ]
机构
[1] Departamento de Matemática,IME,Universidade de S?o Paulo
[2] Universidade Federal da Bahia,IME,Departamento de Matemática
[3] Normandie Univ.,UNICAEN,CNRS,LMNO
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
O186.11 [古典微分几何];
学科分类号
0701 ; 070101 ;
摘要
Let M and N be topological spaces,let G be a group,and let τ:G×M→M be a proper free action of G.In this paper,we define a Borsuk-Ulam-type property for homotopy classes of maps from M to N with respect to the pair(G,τ) that generalises the classical antipodal Borsuk-Ulam theorem of maps from the n-sphere S~n to R~n.In the cases where M is a finite pathwise-connected CWcomplex,G is a finite,non-trivial Abelian group,τ is a proper free cellular action,and N is either R~2 or a compact surface without boundary different from S~2 and RP~2,we give an algebraic criterion involving braid groups to decide whether a free homotopy class β∈[M,N] has the Borsuk-Ulam property.As an application of this criterion,we consider the case where M is a compact surface without boundary equipped with a free action τ of the finite cyclic group Zn.In terms of the orient ability of the orbit space Mof M by the action τ,the value of n modulo 4 and a certain algebraic condition involving the first homology group of M,we are able to determine if the single homotopy class of maps from M to R~2 possesses the Borsuk-Ulam property with respect to(Z,τ).Finally,we give some examples of surfaces on which the symmetric group acts,and for these cases,we obtain some partial results regarding the Borsuk-Ulam property for maps whose target is R~2.
引用
收藏
页码:1803 / 1822
页数:20
相关论文
共 50 条
  • [1] Free Cyclic Actions on Surfaces and the Borsuk—Ulam Theorem
    Daciberg Lima Gonçalves
    John Guaschi
    Vinicius Casteluber Laass
    [J]. Acta Mathematica Sinica, English Series, 2022, 38 : 1803 - 1822
  • [2] Free Cyclic Actions on Surfaces and the Borsuk-Ulam Theorem
    Goncalves, Daciberg Lima
    Guaschi, John
    Laass, Vinicius Casteluber
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (10) : 1803 - 1822
  • [3] A Borsuk-Ulam theorem for compact Lie group actions
    Biasi, C
    de Mattos, D
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (01): : 127 - 137
  • [4] A Borsuk-Ulam Theorem for compact Lie group actions
    Carlos Biasi
    Denise de Mattos*
    [J]. Bulletin of the Brazilian Mathematical Society, 2006, 37 : 127 - 137
  • [6] Aspects of the Borsuk–Ulam theorem
    M. C. Crabb
    J. Jaworowski
    [J]. Journal of Fixed Point Theory and Applications, 2013, 13 : 459 - 488
  • [7] A SIMPLE PROOF OF THE BORSUK-ULAM THEOREM FOR Zp-ACTIONS
    Singh, Mahender
    [J]. TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 249 - 253
  • [8] Aspects of the Borsuk-Ulam theorem
    Crabb, M. C.
    Jaworowski, J.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (02) : 459 - 488
  • [9] Using the Borsuk-Ulam Theorem
    Fodor, Ferenc
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2005, 71 (1-2): : 449 - 450
  • [10] DIGITAL BORSUK-ULAM THEOREM
    Burak, G.
    Karaca, I.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (02): : 477 - 499