A SIMPLE PROOF OF THE BORSUK-ULAM THEOREM FOR Zp-ACTIONS

被引:0
|
作者
Singh, Mahender [1 ]
机构
[1] Harish Chandra Res Inst, Sch Math, Allahabad 211019, Uttar Pradesh, India
来源
关键词
cohomology ring; equivariant map; Hurewicz homomorphism; universal coefficient formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we give a simple proof of the Borsuk-Ulam theorem for Z(p)-actions. We prove that if S-n and S-m are equipped with free Z(p)-actions (p prime) and f: S-m --> S-m is a Z(p)-equivariant map, then n <= m.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条