Wavelet estimation of the diffusion coefficient in time dependent diffusion models

被引:0
|
作者
Ping CHEN~(1
2 School of Science
机构
基金
中国国家自然科学基金;
关键词
wavelet estimation; time-dependent diffusion coefficient; linear growth condition; strong consistency;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation problem for diffusion coefficients in diffusion processes has been studied in many papers,where the diffusion coefficient function is assumed to be a 1-dimensional bounded Lipschitzian function of the state or the time only.There is no previous work for the nonparametric estimation of time-dependent diffusion models where the diffusion coefficient depends on both the state and the time.This paper introduces and studies a wavelet estimation of the time-dependent diffusion coefficient under a more general assumption that the diffusion coefficient is a linear growth Lipschitz function.Using the properties of martingale,we translate the problems in diffusion into the nonparametric regression setting and give the Lconvergence rate.A strong consistency of the estimate is established.With this result one can estimate the time-dependent diffusion coefficient using the same structure of the wavelet estimators under any equivalent probability measure.For example, in finance,the wavelet estimator is strongly consistent under the market probability measure as well as the risk neutral probability measure.
引用
收藏
页码:1597 / 1610
页数:14
相关论文
共 50 条
  • [41] DIFFUSION-COEFFICIENT OF OXYGEN DETERMINED IN MILLIPORE FILTERS BY ANALYSIS OF TIME-DEPENDENT DIFFUSION
    VANDIJK, A
    HOOFD, L
    TUREK, Z
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1994, 479P : P101 - P101
  • [42] UNDERSTANDING THE TIME-DEPENDENT EFFECTIVE DIFFUSION COEFFICIENT MEASURED BY DIFFUSION MRI: THE INTRACELLULAR CASE
    Haddar, Houssem
    Li, Jing-Rebecca
    Schiavi, Simona
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 774 - 800
  • [43] Identification of the diffusion coefficient in a time fractional diffusion equation
    Shayegan, Amir Hossein Salehi
    Zakeri, Ali
    Bodaghi, Soheila
    Heshmati, M.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (02): : 299 - 306
  • [44] ON THE ESTIMATION OF THE DIFFUSION-COEFFICIENT FOR MULTIDIMENSIONAL DIFFUSION-PROCESSES
    GENONCATALOT, V
    JACOD, J
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1993, 29 (01): : 119 - 151
  • [45] THE MAXIMUM LIKELIHOOD ESTIMATION OF COEFFICIENT OF DIFFUSION IN A BIRTH AND DIFFUSION PROCESS
    ADKE, SR
    DHARMADHIKARI, SR
    [J]. BIOMETRIKA, 1980, 67 (03) : 571 - 576
  • [46] A diffusion model with a moisture dependent diffusion coefficient for parboiled rice
    Elbert, G
    Tolaba, MP
    Aguerre, RJ
    Suárez, C
    [J]. DRYING TECHNOLOGY, 2001, 19 (01) : 155 - 166
  • [47] IMPLANT DIFFUSION WITH POSITION-DEPENDENT DIFFUSION-COEFFICIENT
    COLLINS, R
    [J]. RADIATION EFFECTS LETTERS, 1981, 58 (05): : 133 - 137
  • [48] Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete
    Petcherdchoo, Aruz
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2013, 38 : 497 - 507
  • [49] Estimation of the Diffusion Coefficient from Crossings
    Danielle Florens
    [J]. Statistical Inference for Stochastic Processes, 1998, 1 (2) : 175 - 195
  • [50] NUMERICAL ESTIMATION OF A DIFFUSION COEFFICIENT IN SUBDIFFUSION
    Jin, Bangti
    Zhou, Zhi
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) : 1466 - 1496