DYNAMICS ON NONCOMMUTATIVE ORLICZ SPACES

被引:0
|
作者
L.E.LABUSCHAGNE [1 ]
W.A.MAJEWSKI [2 ]
机构
[1] DSI-NRF CoE in Mathematics and Statistics Science, Focus Area for PAA,Internal Box 209, School of Mathematics and Statistics Science NWU
[2] Focus Area for PAA, North-West-University
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
O177.3 [线性空间理论(向量空间)]; O414.2 [统计物理学];
学科分类号
070104 ; 0809 ;
摘要
Quantum dynamical maps are defined and studied for quantum statistical physics based on Orlicz spaces. This complements earlier work [26] where we made a strong case for the assertion that statistical physics of regular systems should properly be based on the pair of Orlicz spaces Lcosh-1, L log(L + 1), since this framework gives a better description of regular observables, and also allows for a well-defined entropy function. In the present paper we "complete" the picture by addressing the issue of the dynamics of such a system,as described by a Markov semigroup corresponding to some Dirichlet form(see [4, 13, 14]).Specifically, we show that even in the most general non-commutative contexts, completely positive Markov maps satisfying a natural Detailed Balance condition canonically admit an action on a large class of quantum Orlicz spaces. This is achieved by the development of a new interpolation strategy for extending the action of such maps to the appropriate intermediate spaces of the pair L∞, L1. As a consequence, we obtain that completely positive quantum Markov dynamics naturally extends to the context proposed in [26].
引用
收藏
页码:1249 / 1270
页数:22
相关论文
共 50 条
  • [41] FLAT ORLICZ SPACES
    PACH, AJ
    SMITH, MA
    TURETT, B
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (04) : 528 - 530
  • [42] Polyhedrality in Orlicz spaces
    Petr Hájek
    Michal Johanis
    [J]. Israel Journal of Mathematics, 2008, 168 : 167 - 188
  • [43] Ultrasymmetric Orlicz spaces
    Astashkin, Sergei V.
    Maligranda, Lech
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (01) : 273 - 285
  • [44] Binary Orlicz Spaces
    Astashkin, S., V
    [J]. DOKLADY MATHEMATICS, 2022, 106 (02) : 315 - 317
  • [45] Binary Orlicz Spaces
    S. V. Astashkin
    [J]. Doklady Mathematics, 2022, 106 : 315 - 317
  • [46] MONOTONICITIES OF ORLICZ SPACES
    BRU, B
    HEINICH, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (19): : 893 - 894
  • [47] PRODUCTS OF ORLICZ SPACES
    DANKERT, G
    [J]. ARCHIV DER MATHEMATIK, 1969, 19 (06) : 635 - &
  • [48] INTERPOLATION OF ORLICZ SPACES
    GUSTAVSSON, J
    PEETRE, J
    [J]. STUDIA MATHEMATICA, 1977, 60 (01) : 33 - 59
  • [49] PREDICTION IN ORLICZ SPACES
    DARST, RB
    LEGG, DA
    TOWNSEND, DW
    [J]. MANUSCRIPTA MATHEMATICA, 1981, 35 (1-2) : 91 - 103
  • [50] Generalization of Orlicz spaces
    Ali Ebadian
    Ali Jabbari
    [J]. Monatshefte für Mathematik, 2021, 196 : 699 - 736