DYNAMICS ON NONCOMMUTATIVE ORLICZ SPACES

被引:0
|
作者
L.E.LABUSCHAGNE [1 ]
W.A.MAJEWSKI [2 ]
机构
[1] DSI-NRF CoE in Mathematics and Statistics Science, Focus Area for PAA,Internal Box 209, School of Mathematics and Statistics Science NWU
[2] Focus Area for PAA, North-West-University
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
O177.3 [线性空间理论(向量空间)]; O414.2 [统计物理学];
学科分类号
070104 ; 0809 ;
摘要
Quantum dynamical maps are defined and studied for quantum statistical physics based on Orlicz spaces. This complements earlier work [26] where we made a strong case for the assertion that statistical physics of regular systems should properly be based on the pair of Orlicz spaces Lcosh-1, L log(L + 1), since this framework gives a better description of regular observables, and also allows for a well-defined entropy function. In the present paper we "complete" the picture by addressing the issue of the dynamics of such a system,as described by a Markov semigroup corresponding to some Dirichlet form(see [4, 13, 14]).Specifically, we show that even in the most general non-commutative contexts, completely positive Markov maps satisfying a natural Detailed Balance condition canonically admit an action on a large class of quantum Orlicz spaces. This is achieved by the development of a new interpolation strategy for extending the action of such maps to the appropriate intermediate spaces of the pair L∞, L1. As a consequence, we obtain that completely positive quantum Markov dynamics naturally extends to the context proposed in [26].
引用
收藏
页码:1249 / 1270
页数:22
相关论文
共 50 条
  • [1] Dynamics on Noncommutative Orlicz Spaces
    L. E. Labuschagne
    W. A. Majewski
    [J]. Acta Mathematica Scientia, 2020, 40 : 1249 - 1270
  • [2] Dynamics on Noncommutative Orlicz Spaces
    Labuschagne, L. E.
    Majewski, W. A.
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) : 1249 - 1270
  • [3] MULTIPLIERS ON NONCOMMUTATIVE ORLICZ SPACES
    Labuschagne, Louis E.
    [J]. QUAESTIONES MATHEMATICAE, 2014, 37 (04) : 531 - 546
  • [4] MAPS ON NONCOMMUTATIVE ORLICZ SPACES
    Labuschagne, Louis E.
    Majewski, Wladyslaw A.
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (03) : 1053 - 1081
  • [5] NONCOMMUTATIVE ORLICZ-HARDY SPACES
    Abdurexit, Abdugheni
    Bekjan, Turdebek N.
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1584 - 1592
  • [6] NONCOMMUTATIVE ORLICZ-HARDY SPACES
    阿布都艾尼·阿不都热西提
    吐尔德别克
    [J]. Acta Mathematica Scientia, 2014, 34 (05) : 1584 - 1592
  • [7] On noncommutative weak Orlicz–Hardy spaces
    Turdebek N. Bekjan
    Madi Raikhan
    [J]. Annals of Functional Analysis, 2022, 13
  • [8] Noncommutative Orlicz spaces associated to a state
    Al-Rashed, Maryam H. A.
    Zegarlinski, Boguslaw
    [J]. STUDIA MATHEMATICA, 2007, 180 (03) : 199 - 209
  • [9] Individual ergodic theorems in noncommutative Orlicz spaces
    Vladimir Chilin
    Semyon Litvinov
    [J]. Positivity, 2017, 21 : 49 - 59
  • [10] Noncommutative weak Orlicz spaces and martingale inequalities
    Bekjan, Turdebek N.
    Chen, Zeqian
    Liu, Peide
    Jiao, Yong
    [J]. STUDIA MATHEMATICA, 2011, 204 (03) : 195 - 212