The Oscillation Inequality of Harmonic Functions on Post Critically Finite Self-Similar Sets

被引:0
|
作者
Donglei Tang [1 ]
Rui Hu [1 ]
机构
[1] Department of Applied Mathematics, Nanjing Audit University
基金
中国国家自然科学基金;
关键词
p.c.f; Self-similar sets; oscillation inequality; H?lder estimate; harmonic functions;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the oscillation inequality of harmonic functions and Hlder estimate of the functions in the domain of the Laplacian on connected post critically finite(p.c.f.) self-similar sets.
引用
收藏
页码:149 / 156
页数:8
相关论文
共 50 条
  • [21] On the distance sets of self-similar sets
    Orponen, Tuomas
    NONLINEARITY, 2012, 25 (06) : 1919 - 1929
  • [22] JULIA SETS AND SELF-SIMILAR SETS
    KAMEYAMA, A
    TOPOLOGY AND ITS APPLICATIONS, 1993, 54 (1-3) : 241 - 251
  • [23] Finite type in measure sense for self-similar sets with overlaps
    Deng, Juan
    Wen, Zhiying
    Xi, Lifeng
    MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (1-2) : 821 - 837
  • [24] Finite type in measure sense for self-similar sets with overlaps
    Juan Deng
    Zhiying Wen
    Lifeng Xi
    Mathematische Zeitschrift, 2021, 298 : 821 - 837
  • [25] Hlder Estimate of Harmonic Functions on a Class of p.c.f. Self-Similar Sets
    Donglei Tang
    Rui Hu
    Chunwei Pan
    Analysis in Theory and Applications, 2014, 30 (03) : 296 - 305
  • [26] A note on the linear independence of characteristic functions of self-similar sets
    Dahlke, S
    Latour, V
    ARCHIV DER MATHEMATIK, 1996, 66 (01) : 80 - 88
  • [27] Julia sets of postcritically finite rational maps and topological self-similar sets
    Kameyama, A
    NONLINEARITY, 2000, 13 (01) : 165 - 188
  • [28] Arithmetic on self-similar sets
    Zhao, Bing
    Ren, Xiaomin
    Zhu, Jiali
    Jiang, Kan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 595 - 606
  • [29] The dimensions of self-similar sets
    Li, WX
    Xiao, DM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 789 - 799
  • [30] Irrational self-similar sets
    Jia, Qi
    Li, Yuanyuan
    Jiang, Kan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 461 - 472