On error distance of Reed-Solomon codes

被引:0
|
作者
LI YuJuan1 & WAN DaQing21 Institute of Mathematics
机构
关键词
Reed-Solomon code; error distance; deep hole; character sum;
D O I
暂无
中图分类号
O157.4 [编码理论(代数码理论)];
学科分类号
070104 ;
摘要
The complexity of decoding the standard Reed-Solomon code is a well known open prob-lem in coding theory. The main problem is to compute the error distance of a received word. Using the Weil bound for character sum estimate, we show that the error distance can be determined precisely when the degree of the received word is small. As an application of our method, we give a significant improvement of the recent bound of Cheng-Murray on non-existence of deep holes (words with maximal error distance).
引用
收藏
页码:1982 / 1988
页数:7
相关论文
共 50 条
  • [31] Decoding double-error-correcting Reed-Solomon codes
    Fenn, STJ
    Benaissa, M
    Taylor, D
    IEE PROCEEDINGS-COMMUNICATIONS, 1995, 142 (06): : 345 - 348
  • [33] Forward error correction with Reed-Solomon codes for wearable computers
    Fong, B
    Rapajic, PB
    Hong, GY
    Fong, ACM
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2003, 49 (04) : 917 - 921
  • [34] Novel Burst Error Correcting Algorithms for Reed-Solomon Codes
    Wu, Yingquan
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 1047 - 1052
  • [35] Decoding Reed-Solomon codes beyond half the minimum distance
    Nielsen, RR
    Hoholdt, T
    CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2000, : 221 - 236
  • [36] A New Method for Evaluating Error Magnitudes of Reed-Solomon Codes
    Lu, Erl-Huei
    Chen, Tso-Cho
    Lu, Pen-Yao
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (02) : 340 - 343
  • [37] Fast Error and Erasure Decoding Algorithm for Reed-Solomon Codes
    Tang, Nianqi
    Chen, Chao
    Han, Yunghsiang S.
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (04) : 759 - 762
  • [38] Decoding double-error-correcting Reed-Solomon codes
    Univ of Huddersfield, West Yorkshire, United Kingdom
    IEE Proc Commun, 6 (345-348):
  • [39] Algebraic decoding of the Reed-Solomon codes class in the error number exceeding a half of the code distance
    Mazurov, O.V.
    Avtometriya, 1996, (05): : 104 - 107
  • [40] Parallel error correction using spectral Reed-Solomon codes
    Univ of Arizona, Tucson, United States
    Journal of Optical Communications, 1997, 18 (04): : 144 - 150