Tilting objects on tubular weighted projective lines:A cluster tilting approach

被引:0
|
作者
Jianmin Chen [1 ]
Yanan Lin [1 ]
Pin Liu [2 ]
Shiquan Ruan [1 ]
机构
[1] School of Mathematical Sciences,Xiamen University
[2] Department of Mathematics,Southwest Jiaotong University
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
O185 [射影(投影)几何、画法几何];
学科分类号
0701 ; 070101 ;
摘要
Using the cluster tilting theory, we investigate the tilting objects in the stable category of vector bundles on a weighted projective line of weight type(2, 2, 2, 2). More precisely, a tilting object consisting of rank-two bundles is constructed via the cluster tilting mutation. Moreover, the cluster tilting approach also provides a new method to classify the endomorphism algebras of the tilting objects in the category of coherent sheaves and the associated bounded derived category.
引用
收藏
页码:691 / 710
页数:20
相关论文
共 50 条
  • [31] Cluster tilting vs. weak cluster tilting in Dynkin type A infinity
    Holm, Thorsten
    Jorgensen, Peter
    FORUM MATHEMATICUM, 2015, 27 (02) : 1117 - 1137
  • [32] TILTING MODULES OF FINITE PROJECTIVE DIMENSION
    MIYASHITA, Y
    MATHEMATISCHE ZEITSCHRIFT, 1986, 193 (01) : 113 - 146
  • [33] Hochschild Dimensions of Tilting Objects
    Ballard, Matthew
    Favero, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (11) : 2607 - 2645
  • [34] Tilting objects in triangulated categories
    Hu, Yonggang
    Yao, Hailou
    Fu, Xuerong
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 410 - 429
  • [35] A CONSTRUCTION OF GORENSTEIN PROJECTIVE τ-TILTING MODULES
    Li, Zhi-Wei
    Zhang, Xiaojin
    COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 103 - 112
  • [36] Internally Calabi-Yau algebras and cluster-tilting objects
    Pressland, Matthew
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 555 - 585
  • [37] Grothendieck Groups and Tilting Objects
    Idun Reiten
    Michel Van den Bergh
    Algebras and Representation Theory, 2001, 4 : 1 - 23
  • [38] Grothendieck groups and tilting objects
    Reiten, I
    Van den Bergh, M
    ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (01) : 1 - 23
  • [39] Classification of tilting bundles over a weighted projective line of type (2, 3, 3)
    Yanan Lin
    Xiaolong Qiu
    Frontiers of Mathematics in China, 2015, 10 : 1147 - 1167
  • [40] Cluster-tilting theory
    Buan, Aslak Bakke
    Marsh, Robert
    TRENDS IN REPRESENTATION THEORY OF ALGEBRAS AND RELATED TOPICS, 2006, 406 : 1 - +