3-PERIODIC ORBIT IMPLYING 683172687698650885-PERIODIC ORBITS——INFIMUMS OF NUMBERS OF PERIODIC ORBITS IN CONTINUOUS FUNCTIONS

被引:0
|
作者
麦结华
机构
[1] Department of Mathematics
[2] Nanning 530004
[3] Guangxi University
[4] PRC
基金
中国国家自然科学基金;
关键词
continuous function; periodic orbit; Sarkovskii’s theorem; unimodal orbit;
D O I
暂无
中图分类号
学科分类号
摘要
For any continuous function f on the interval I=[0, 1] and any m, n≥1, let N(n, f)denote the number of n-periodic orbits in f. Put N(n, m)=min{N(n, f):f is a continuousfunction on I, and N(m, f)≥1}. The famous Sarkovskii’s theorem can be stated as follows:If n?m, then N(n,m)≥1. In this paper, we further obtain analytic expressions of the precisevalue of N(n, m) for all positive integers m and n, which are convenient for computing.
引用
收藏
页码:1194 / 1204
页数:11
相关论文
共 50 条
  • [31] Uniform approximation for bifurcations, of periodic orbits with high repetition numbers
    Sieber, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15): : 4715 - 4732
  • [32] The numbers of periodic orbits hidden at fixed points of holomorphic maps
    Qiao, Jianyong
    Qu, Hongyu
    Zhang, Guangyuan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) : 578 - 592
  • [34] Natural periodic orbit-attitude behaviors for rigid bodies in three-body periodic orbits
    Guzzetti, Davide
    Howell, Kathleen C.
    ACTA ASTRONAUTICA, 2017, 130 : 97 - 113
  • [35] CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK
    BIELAWSKI, S
    DEROZIER, D
    GLORIEUX, P
    PHYSICAL REVIEW E, 1994, 49 (02): : R971 - R974
  • [36] Towards full characterization of continuous systems in terms of periodic orbits
    Galias, Z
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 4, PROCEEDINGS, 2004, : 716 - 719
  • [37] Role of short periodic orbits in quantum maps with continuous openings
    Prado, Carlos A.
    Carlo, Gabriel G.
    Benito, R. M.
    Borondo, F.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [38] Localization of Floquet states along a continuous line of periodic orbits
    Timberlake, T
    Petruzielo, F
    Reichl, LE
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [40] Normal form invariants around spin-orbit periodic orbits
    Celletti, A
    Falcolini, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 78 (1-4): : 227 - 241