Indecomposable representations of the Lie algebra of derivations for d-torus

被引:0
|
作者
LIAN HaiFeng1
2Department of Computer and Information
3Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
Lie algebra; indecomposable representation; torus;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
摘要
Let DerA be the Lie algebra of derivations of the d-torus A = C[t1± 1, . . . , td±1]. By applying Shen-Larsson’s functors we get a class of indecomposable DerA-modules from finite-dimensional indecomposable gld-modules. We also give a complete description of the submodules of these indecomposable DerA-modules. Our results generalize those obtained by Rao.
引用
收藏
页码:306 / 315
页数:10
相关论文
共 50 条
  • [41] WHITEHEAD THEOREM FOR LIE-ALGEBRA OF COMMUTATIVE ALGEBRA DERIVATIONS
    ZUBCHENKO, NB
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (03): : 90 - 91
  • [42] SEMISIMPLE PART OF THE ALGEBRA OF DERIVATIONS OF A NILPOTENT LIE-ALGEBRA
    BENOIST, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (18): : 901 - 904
  • [43] DERIVATIONS AND AUTOMORPHISMS OF THE LIE-ALGEBRA STRUCTURE OF THE WEYL ALGEBRA
    DEWILDE, M
    VANHAUTEN, F
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (13) : 5231 - 5248
  • [44] LIE-ALGEBRA OF DERIVATIONS OF THE ALGEBRA OF DIFFERENTIAL-OPERATORS
    ZHAO, KM
    CHINESE SCIENCE BULLETIN, 1993, 38 (10): : 793 - 798
  • [45] ON REPRESENTATIONS OF POINCARES LIE ALGEBRA
    FLATO, M
    GUILLOT, JC
    STERNHEI.D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (14): : 914 - &
  • [46] Contractions of Lie algebra representations
    Cattaneo, U
    Wreszinski, WF
    REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (10) : 1179 - 1207
  • [47] Representations of a class of Lie Algebra
    Zhang Yanyan
    Liu Jianbo
    Jiao Zhezhe
    Li Wenyi
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 2015 - +
  • [48] Derivations and Automorphisms of a Lie Algebra of Block Type
    Xia, Chunguang
    Wang, Wei
    ALGEBRA COLLOQUIUM, 2013, 20 (01) : 173 - 180
  • [49] Effective computation of algebra of derivations of Lie algebras
    Camacho, LM
    Gómez, JR
    Navarro, RM
    Rodríguez, I
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2000, : 101 - 111
  • [50] MORE ON LIE DERIVATIONS OF A GENERALIZED MATRIX ALGEBRA
    Mokhtari, A. H.
    Vishki, H. R. Ebrahimi
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 385 - 396