Large Deviations for a Test of Symmetry Based on Kernel Density Estimator of Directional Data

被引:0
|
作者
Mingzhou XU [1 ]
Kun CHENG [1 ]
机构
[1] School of Information Engineering, Jingdezhen Ceramic University
关键词
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assume that fis the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere S. We established that the large deviation principle for {supx∈S|f(x)-f(-x)|, n ≥ 1} holds if the kernel function is a function with bounded variation, and the density function f of the random variables is continuous and symmetric.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条