An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application

被引:0
|
作者
HE Le-ping~1 CHEN Xiao-yu~2 SHANG Xiao-zhou~2 (1.Department of Mathematics and Computer Science
2.Department of Mathematics and Computer Science
机构
关键词
Hardy-Hilbert’s type inequality; Hardy-Littlewood’s inequality; Hlder’s inequality; beta function;
D O I
暂无
中图分类号
O175.5 [积分方程];
学科分类号
摘要
In this paper,it is shown that Hardy-Hilbert’s integral inequality with parameter is improved by means of a sharpening of Hlder’s inequality.A new inequality is established as follows: (integral fromαto∞)(integral fromαto∞)(f(x)g(y)/(x+y+2β))dxdy <(π/sin(π/p)){(integral fromαto∞)f(x)dx}·{(integral fromαto∞)g(x)dx}·(1-R), where R=(S(F,h)-S(G,h)),m=min{1/p,1/q}.As application;an extension of Hardy-Littlewood’s inequality is given.
引用
收藏
页码:68 / 74
页数:7
相关论文
共 50 条
  • [31] ON A DECOMPOSITION OF HARDY-HILBERT'S TYPE INEQUALITY
    Lashkaripour, R.
    Moazzen, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (01) : 101 - 112
  • [32] On a new Hardy-Hilbert's type inequality
    Yang, BC
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (03): : 355 - 363
  • [33] The p-Adic Hausdorff Operator and Some Applications to Hardy-Hilbert Type Inequalities
    Dung, Kieu Huu
    Duong, Dao Van
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (03) : 303 - 316
  • [34] SOME NEW INEQUALITIES SIMILAR TO HARDY-HILBERT'S INEQUALITY
    Sunanda, S. K.
    Nahak, C.
    Nanda, S.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 601 - 611
  • [35] On Hardy-Hilbert's Integral Inequality and Its Equivalent Form
    杨必成
    Communications in Mathematical Research, 2003, (02) : 139 - 148
  • [36] HARDY-HILBERT'S INEQUALITY AND POWER INEQUALITIES FOR BEREZIN NUMBERS OF OPERATORS
    Garayev, Mubariz T.
    Gurdal, Mehmet
    Okudan, Arzu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03): : 883 - 891
  • [37] On a refinement of Hardy-Hilbert Inequality
    Sun, Baoju
    PROGRESS IN STRUCTURE, PTS 1-4, 2012, 166-169 : 3027 - 3030
  • [38] On an extension of the Hardy-Hilbert theorem
    Weijian, J
    Mingzhe, G
    Xuemei, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2005, 42 (01) : 21 - 35
  • [40] A FURTHER GENERALIZATION OF HARDY-HILBERT'S INTEGRAL INEQUALITY WITH PARAMETER AND APPLICATIONS
    He, L.
    Dragomir, S. S.
    Yang, Q.
    JOURNAL OF APPLIED ANALYSIS, 2006, 12 (01) : 59 - 70