Baseline optimization of SQUID gradiometer for magnetocardiography

被引:1
|
作者
李华 [1 ,2 ,3 ]
张树林 [1 ,2 ]
邱阳 [1 ,2 ,3 ]
张永升 [1 ,2 ]
张朝祥 [1 ,2 ]
孔祥燕 [1 ,2 ]
谢晓明 [1 ,2 ]
机构
[1] State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),Chinese Academy of Sciences(CAS)
[2] Joint Research Laboratory on Superconductivity and Bioelectronics,Collaboration Between CAS-Shanghai
[3] University of Chinese Academy of Sciences
关键词
SQUID; gradiometer; baseline optimization; magnetocardiography;
D O I
暂无
中图分类号
O441 [电磁学];
学科分类号
0809 ;
摘要
SQUID gradiometer techniques are widely used in noise cancellation for biomagnetic measurements.An appropriate gradiometer baseline is very important for the biomagnetic detection with high performance.By placing several magnetometers at different heights along the vertical direction,we could simultaneously obtain the synthetic gradiometers with different baselines.By using the traditional signal-to-noise ratio(SNR) as a performance index,we successfully obtain an optimal baseline for the magnetocardiography(MCG) measurement in a magnetically shielded room(MSR).Finally,we obtain an optimal baseline of 7 cm and use it for the practical MCG measurement in our MSR.The SNR about 38 dB is obtained in the recorded MCG signal.
引用
下载
收藏
页码:475 / 477
页数:3
相关论文
共 50 条
  • [31] Application of SQUID magnetometers in fetal magnetocardiography
    Rijpma, AP
    Seppenwoolde, Y
    ter Brake, HJM
    Peters, MJ
    Rogalla, H
    APPLIED SUPERCONDUCTIVITY 1997, VOLS 1 AND 2: VOL 1: SMALL SCALE AND ELECTRONIC APPLICATIONS; VOL 2: LARGE SCALE AND POWER APPLICATIONS, 1997, (158): : 771 - 774
  • [32] Factors Affecting the Performance of a SQUID Gradiometer
    Baltag, Octavian
    Rau, Miuta Carmina
    2015 9TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2015, : 953 - 956
  • [33] Development of precise off-diagonal magnetoimpedance gradiometer for magnetocardiography
    Uchiyama, Tsuyoshi
    Takiya, Takashi
    AIP ADVANCES, 2017, 7 (05):
  • [34] A 24-SQUID GRADIOMETER FOR MAGNETOENCEPHALOGRAPHY
    AHLFORS, S
    AHONEN, A
    EHNHOLM, G
    HAMALAINEN, M
    ILMONIEMI, R
    KAJOLA, M
    KIVIRANTA, M
    KNUUTILA, J
    LOUNASMAA, O
    SIMOLA, J
    TESCHE, C
    VILKMAN, V
    PHYSICA B, 1990, 165 : 97 - 98
  • [35] 24-SQUID gradiometer for magnetoencephalography
    Ahlfors, S.
    Ahonen, A.
    Ehnholm, G.
    Haemaelaeinen, M.
    Ilmoniemi, R.
    Kajola, M.
    Kiviranta, M.
    Knuutila, J.
    Lounasmaa, O.V.
    Simola, J.
    Tesche, C.
    Vilkman, V.
    Physica B: Condensed Matter, 1990, 165-66 (01) : 97 - 98
  • [36] Establishment of 37 Channel SQUID System for Magnetocardiography
    Parasakthi, C.
    Patel, Rajesh
    Sengottuvel, S.
    Mariyappa, N.
    Gireesan, K.
    Janawadkar, M. P.
    Radhakrishnan, T. S.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 871 - 872
  • [37] A digital filtering scheme for SQUID based magnetocardiography
    Zhu, XM
    Ren, YF
    Yu, HW
    Zhao, SP
    Chen, GH
    Zhang, LH
    Yang, QS
    CHINESE PHYSICS, 2006, 15 (01): : 100 - 103
  • [38] A SQUID gradiometer with trimmable additional positive feedback
    Takada, Y
    Tsukada, K
    Adachi, A
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1996, 9 (4A): : A120 - A123
  • [39] Integrated DC SQUID gradiometer for biomagnetic application
    Chinone, Kazuo
    Kasai, Naoko
    Kiryu, Shogo
    Koyanagi, Masao
    Kado, Hisasi
    Nakanisi, Masakazu
    Kosaka, Shin
    Systems and Computers in Japan, 1991, 22 (04) : 88 - 99
  • [40] THIN-FILM DC SQUID GRADIOMETER
    KETCHEN, MB
    GOUBAU, WM
    CLARKE, J
    DONALDSON, GB
    IEEE TRANSACTIONS ON MAGNETICS, 1977, 13 (01) : 372 - 374