An approximation algorithm for the k-median warehouse-retailer network design problem

被引:0
|
作者
LI Yu [1 ]
XIU NaiHua [1 ]
XU DaChuan [2 ]
机构
[1] Department of Mathematics, Beijing Jiaotong University
[2] Department of Applied Mathematics, Beijing University of Technology
基金
中国国家自然科学基金;
关键词
approximation algorithm; warehouse-retailer network design problem; k-median;
D O I
暂无
中图分类号
O221 [规划论(数学规划)]; O157.5 [图论];
学科分类号
070104 ; 070105 ; 1201 ;
摘要
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.
引用
收藏
页码:2381 / 2388
页数:8
相关论文
共 50 条
  • [41] PROBABILISTIC ANALYSIS OF A RELAXATION FOR THE K-MEDIAN PROBLEM
    AHN, S
    COOPER, C
    CORNUEJOLS, G
    FRIEZE, A
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (01) : 1 - 31
  • [42] Approximating k-Median via Pseudo-Approximation
    Li, Shi
    Svensson, Ola
    [J]. STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 901 - 910
  • [43] Polyhedral properties of the K-median problem on a tree
    de Vries, Sven
    Posner, Marc E.
    Vohra, Rakesh V.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 110 (02) : 261 - 285
  • [44] A new greedy approach to k-median problem
    School of Computer Science and Technology, Shandong University, Jinan 250061, China
    不详
    [J]. J. Inf. Comput. Sci., 2006, 3 (515-525):
  • [45] ASYMPTOTIC APPROACH TO THE PROBLEM OF K-MEDIAN OF A GRAPH
    EMELICHEV, VA
    EFIMCHIK, NE
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 1994, 30 (05) : 726 - 732
  • [46] An Improved Local Search Algorithm for k-Median
    Cohen-Addad, Vincent
    Gupta, Anupam
    Hu, Lunjia
    Oh, Hoon
    Saulpic, David
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 1556 - 1612
  • [47] New Approximability Results for the Robust k-Median Problem
    Bhattacharya, Sayan
    Chalermsook, Parinya
    Mehlhorn, Kurt
    Neumann, Adrian
    [J]. ALGORITHM THEORY - SWAT 2014, 2014, 8503 : 50 - 61
  • [48] An Improved Approximation for k-Median and Positive Correlation in Budgeted Optimization
    Byrka, Jaroslaw
    Pensyl, Thomas
    Rybicki, Bartosz
    Srinivasan, Aravind
    Trinh, Khoa
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (02)
  • [49] Constant-Factor FPT Approximation for Capacitated k-Median
    Adamczyk, Marek
    Byrka, Jaroslaw
    Marcinkowski, Jan
    Meesum, Syed M.
    Wlodarczyk, Michal
    [J]. 27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [50] A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median Clustering
    Hess, Tom
    Moshkovitz, Michal
    Sabato, Sivan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34