An approximation algorithm for the k-median warehouse-retailer network design problem

被引:0
|
作者
LI Yu [1 ]
XIU NaiHua [1 ]
XU DaChuan [2 ]
机构
[1] Department of Mathematics, Beijing Jiaotong University
[2] Department of Applied Mathematics, Beijing University of Technology
基金
中国国家自然科学基金;
关键词
approximation algorithm; warehouse-retailer network design problem; k-median;
D O I
暂无
中图分类号
O221 [规划论(数学规划)]; O157.5 [图论];
学科分类号
070104 ; 070105 ; 1201 ;
摘要
We study the generalizedk-median version of the warehouse-retailer network design problem(kWRND).We formulate the k-WRND as a binary integer program and propose a 6-approximation randomized algorithm based on Lagrangian relaxation.
引用
收藏
页码:2381 / 2388
页数:8
相关论文
共 50 条
  • [1] An approximation algorithm for the k-median warehouse-retailer network design problem
    Yu Li
    NaiHua Xiu
    DaChuan Xu
    [J]. Science China Mathematics, 2013, 56 : 2381 - 2388
  • [2] An approximation algorithm for the k-median warehouse-retailer network design problem
    Li Yu
    Xiu NaiHua
    Xu DaChuan
    [J]. SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2381 - 2388
  • [3] Warehouse-retailer network design problem
    Teo, CP
    Shu, J
    [J]. OPERATIONS RESEARCH, 2004, 52 (03) : 396 - 408
  • [4] THE WAREHOUSE-RETAILER NETWORK DESIGN GAME
    Li, Gaidi
    Shao, Jiating
    Xu, Dachuan
    Xu, Wen-Qing
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (01) : 291 - 305
  • [5] A Parameterized Approximation Algorithm for the Chromatic k-Median Problem
    Zhang, Zhen
    Zhang, Jinchuan
    Zhu, Lingzhi
    [J]. IEEE ACCESS, 2021, 9 : 31678 - 31683
  • [6] Approximation algorithms for the k-median problem
    Solis-Oba, R
    [J]. EFFICIENT APPROXIMATION AND ONLINE ALGORITHMS: RECENT PROGRESS ON CLASSICAL COMBINATORIAL OPTIMIZATION PROBLEMS AND NEW APPLICATIONS, 2006, 3484 : 292 - 320
  • [7] A constant-factor approximation algorithm for the k-median problem
    Charikar, M
    Guha, S
    Tardos, E
    Shmoys, DB
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (01) : 129 - 149
  • [8] An approximation algorithm for k-median with priorities
    Zhen ZHANG
    Qilong FENG
    Jinhui XU
    Jianxin WANG
    [J]. Science China(Information Sciences), 2021, 64 (05) : 45 - 46
  • [9] An Efficient Greedy Heuristic for Warehouse-Retailer Network Design Optimization
    Shu, Jia
    [J]. TRANSPORTATION SCIENCE, 2010, 44 (02) : 183 - 192
  • [10] An approximation algorithm for k-median with priorities
    Zhang, Zhen
    Feng, Qilong
    Xu, Jinhui
    Wang, Jianxin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (05)