Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage

被引:0
|
作者
Yue Zhu1)
机构
关键词
Titanium alloy; Lumbar; Interbody fusion cage; Biomechanics;
D O I
暂无
中图分类号
R318.01 [生物力学];
学科分类号
0831 ;
摘要
This work focuses on the inffuence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus. They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young s modulus ~50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young s modulus ~110 GPa. The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ~9.8 kN and endure fatigue cycles higher than 5×106 without functional or mechanical failure under 2.0 kN axial compression. The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9~T10) dissected freshly from the calf with averaged age of 6 months. The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05). The above results suggest that the cage with low elastic modulus has great potential for clinical applications.
引用
收藏
页码:325 / 328
页数:4
相关论文
共 50 条
  • [41] The Ray threaded fusion cage for posterior lumbar interbody fusion - Reply
    Onesti, ST
    Ashkenazi, E
    NEUROSURGERY, 1998, 43 (04) : 983 - 983
  • [42] Analysis of the correlative factors in the selection of interbody fusion cage height in transforaminal lumbar interbody fusion
    Wang, Hongli
    Chen, Wenjie
    Jiang, Jianyuan
    Lu, Feizhou
    Ma, Xiaosheng
    Xia, Xinlei
    BMC MUSCULOSKELETAL DISORDERS, 2016, 17
  • [43] Analysis of the correlative factors in the selection of interbody fusion cage height in transforaminal lumbar interbody fusion
    Hongli Wang
    Wenjie Chen
    Jianyuan Jiang
    Feizhou Lu
    Xiaosheng Ma
    Xinlei Xia
    BMC Musculoskeletal Disorders, 17
  • [44] Comparison of Transforaminal Lumbar Interbody Fusion Using the Boomerang-Shaped Cage with Traditional Posterior Lumbar Interbody Fusion for Lumbar Spondylolisthesis
    Ishihara, Yohei
    Morishita, Masutaro
    Miyaki, Jiro
    Kanzaki, Koji
    Toyone, Tomoaki
    SPINE SURGERY AND RELATED RESEARCH, 2019, 3 (01): : 71 - 78
  • [45] Lumbar lateral interbody cage with plate augmentation: in vitro biomechanical analysis
    Le Huec, JC
    Liu, M
    Skalli, W
    Josse, L
    EUROPEAN SPINE JOURNAL, 2002, 11 (02) : 130 - 136
  • [46] Influence of Placement of Lumbar Interbody Cage on Subsidence Risk: Biomechanical Study
    Andriamifidy, Henintsoa Fanjaniaina
    Rohde, Matthew
    Swami, Pooja
    Liang, Haixiang
    Grande, Daniel
    Virk, Sohrab
    WORLD NEUROSURGERY, 2024, 183 : E440 - E446
  • [47] Lumbar lateral interbody cage with plate augmentation: in vitro biomechanical analysis
    J. Le Huec
    M. Liu
    W. Skalli
    L. Josse
    European Spine Journal, 2002, 11 : 130 - 136
  • [48] Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis
    Wang, Bingjin
    Hua, Wenbin
    Ke, Wencan
    Lu, Saideng
    Li, Xingsheng
    Zeng, Xianlin
    Yang, Cao
    WORLD NEUROSURGERY, 2019, 126 : E819 - E824
  • [49] Does Lumbar Interbody Cage Size Influence Subsidence? A Biomechanical Study
    Yuan, Wei
    Kaliya-Perumal, Arun-Kumar
    Chou, Siaw Meng
    Oh, Jacob Yoong-Leong
    SPINE, 2020, 45 (02) : 88 - 95
  • [50] Bullet Cage Versus Crescent Cage Design in Transforaminal Lumbar Interbody Fusion
    Wanderman, Nathan
    Sebastian, Arjun
    Fredericks, Donald R., Jr.
    Slaven, Sean E.
    Helgeson, Melvin D.
    CLINICAL SPINE SURGERY, 2020, 33 (02): : 47 - 49