finite element method;
anisotropic;
superconvergence;
posteriori error estimate;
D O I:
暂无
中图分类号:
O242.1 [数学模拟];
学科分类号:
070102 ;
摘要:
The main aim of this paper is to give an anisotropic posteriori error estimator. We firstly study the convergence of bilinear finite element for the second order problem under anisotropic meshes.By using some novel approaches and techniques,the optimal error estimates and some superconvergence results are obtained without the regularity assumption and quasi-uniform assumption requirements on the meshes.Then,based on these results, we give an anisotropic posteriori error estimate for the second problem.
机构:
School of Mathematical Sciences,Xiamen UniversitySchool of Applied Mathematics,Central University of Finance and Economics
CHEN HongTao
XIE HeHu
论文数: 0引用数: 0
h-index: 0
机构:
LSEC,NCMIS,Institute of Computational Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of SciencesSchool of Applied Mathematics,Central University of Finance and Economics
机构:
PSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, France
Transvalor SA, E Golf Pk, F-06410 Biot, FrancePSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, France
Jesus O, Garcia C.
Jose R, Alves Z.
论文数: 0引用数: 0
h-index: 0
机构:
Transvalor SA, E Golf Pk, F-06410 Biot, FrancePSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, France
Jose R, Alves Z.
Julien, Barlier
论文数: 0引用数: 0
h-index: 0
机构:
Transvalor SA, E Golf Pk, F-06410 Biot, FrancePSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, France
Julien, Barlier
Francois, Bay
论文数: 0引用数: 0
h-index: 0
机构:
PSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, FrancePSL Univ, Mines Paris, Ctr Mat Forming CEMEF, UMR CNRS, F-06904 Sophia Antipolis, France