Rational Solutions with Non-zero Asymptotics of the Modified Korteweg-de Vries Equation

被引:0
|
作者
张莹莹 [1 ]
张大军 [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
中国国家自然科学基金;
关键词
the modified KdV equation; bilinear Ba¨cklund transformation; Wronskian; rational solutions;
D O I
暂无
中图分类号
O411.1 [数学物理方法]; O175 [微分方程、积分方程];
学科分类号
0701 ; 070104 ;
摘要
Using the relation between the mKdV equation and the KdV-mKdV equation,we derive non-singular rational solutions for the mKdV equation.The solutions are given in terms of Wronskians.Dynamics of some solutions is investigated by means of asymptotic analysis.Wave trajectories of high order rational solutions are asymptotically governed by cubic curves.
引用
收藏
页码:923 / 929
页数:7
相关论文
共 50 条
  • [21] BACKLUND TRANSFORMATION FOR SOLUTIONS OF MODIFIED KORTEWEG-DE VRIES EQUATION
    WADATI, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 36 (05) : 1498 - 1498
  • [22] Long-time asymptotics of the coupled modified Korteweg-de Vries equation
    Geng, Xianguo
    Chen, Mingming
    Wang, Kedong
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 142 : 151 - 167
  • [23] Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions
    Xing, Qiuxia
    Wang, Lihong
    Mihalache, Dumitru
    Porsezian, Kuppuswamy
    He, Jingsong
    [J]. CHAOS, 2017, 27 (05)
  • [24] Asymptotics of solutions to periodic problem for the Korteweg-de Vries-Burgers equation
    Naumkin, Pavel I.
    Villela-Aguilar, Jose de Jesus
    [J]. STUDIES IN APPLIED MATHEMATICS, 2022, 149 (02) : 523 - 536
  • [25] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    [J]. ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [26] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    [J]. ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323
  • [27] ANALYSIS OF A MODIFIED KORTEWEG-DE VRIES EQUATION
    LEO, M
    LEO, RA
    SOLIANI, G
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06): : 1475 - 1466
  • [28] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    [J]. Technical Physics Letters, 2002, 28 : 235 - 236
  • [29] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [30] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)