CFD-DEM simulation of fluid-solid flow of a tapered column separation bed

被引:0
|
作者
Duan Chenlong [1 ]
Sheng Cheng [1 ]
Wu Lingling [1 ]
Zhao Yuemin [1 ]
He Jinfeng [1 ]
机构
[1] School of Chemical Engineering and Technology,China University of Mining & Technology
基金
中国国家自然科学基金;
关键词
Tapered column separation bed; Waste printed circuit boards; Computational fluid dynamics; Discrete element method; Fluid-solid flow;
D O I
暂无
中图分类号
X796 [印刷工业];
学科分类号
摘要
Research on recycling waste Printed Circuit Boards(PCB) is at the forefront of preventing environmental pollution and finding ways to recycle resources.The Tapered Column Separation Bed(TCSB) is invented aiming at disposing the problem that fine particles of waste printed circuit boards cannot be separated efficiently so as to obtain further insight about the underlying mechanisms and demonstrate the separation feasibility in the tapered column separation bed.In this work,a Computational Fluid Dynamics(CFD) coupled with Discrete Element Method(DEM) model for two-phase flow has been extended to simulate the fluid-solid flow in the tapered column separation bed.Its validity is demonstrated by its successful capturing the key features of particles’ flow pattern,velocity,the pressure distribution,the axial position with time and axial force for particles with different densities.Simulation results show that the plastic particles and resin particles become overflow,while copper particles,iron particles and aluminum particles successively become underflow,with a discharge water flow rate of 1 m~3/h,an obliquity of 30°.The simulated results agree reasonably well with the experimental observation.Using this equipment to separate waste PCBs is feasible,theoretically.
引用
收藏
页码:855 / 859
页数:5
相关论文
共 50 条
  • [21] CFD-DEM simulation of flow pattern and particle velocity in a fluidized bed with wet particles
    Song, Chengxiao
    Liu, Daoyin
    Ma, Jiliang
    Chen, Xiaoping
    POWDER TECHNOLOGY, 2017, 314 : 346 - 354
  • [22] Hydrodynamic investigation of gas-solid flow in rectangular spout-fluid bed using CFD-DEM modeling
    Saidi, Maysam
    Tabrizi, Hassan Basirat
    Grace, John R.
    Lim, C. Jim
    POWDER TECHNOLOGY, 2015, 284 : 355 - 364
  • [23] Controlling the Flow Structure in Fluidized Bed: A CFD-DEM Approach
    de Oliveira, D. G.
    Ayeni, O. O.
    Wu, C. L.
    Nandakumar, K.
    Joshi, J. B.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON DISCRETE ELEMENT METHODS, 2017, 188 : 619 - 626
  • [24] Numerical simulation of flow behavior of particles in an inverse liquid-solid fluidized bed with a jet using CFD-DEM
    Wang, Shuyan
    Wang, Xinxue
    Wang, Xu
    Shao, Baoli
    Ma, Yimei
    Sun, Qiji
    Zhao, Jian
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 82 : 214 - 225
  • [25] EVALUATION OF DIFFERENT MATHEMATICAL MODELS IN THE CFD-DEM SIMULATION OF CONICAL SPOUTED BED FLUID DYNAMICS
    Batista, J. N. M.
    Bettega, R.
    CHEMICAL INDUSTRY & CHEMICAL ENGINEERING QUARTERLY, 2021, 27 (04) : 329 - 340
  • [26] Validation of CFD-DEM simulation of a liquid–solid fluidized bed by dynamic analysis of time series
    Picabea, Julia
    Maestri, Mauricio
    Cassanello, Miryan
    Salierno, Gabriel
    De Blasio, Cataldo
    Cardona, María Angélica
    Hojman, Daniel
    Somacal, Héctor
    Particuology, 2022, 68 : 75 - 87
  • [27] ECT measurement and CFD-DEM simulation of particle distribution in a down-flow fluidized bed
    Zhao, Tong
    Takei, Masahiro
    Doh, Deog-Hee
    FLOW MEASUREMENT AND INSTRUMENTATION, 2010, 21 (03) : 212 - 218
  • [28] Experimental Investigation and CFD-DEM Simulation of Solids Mixing in Tapered Fluidized Beds
    Sarafan, Kiana
    Molaei Dehkordi, Asghar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22115 - 22130
  • [29] CFD-DEM Simulation of a Coating Process in a Fluidized Bed Rotor Granulator
    Grohn, Philipp
    Lawall, Marius
    Oesau, Tobias
    Heinrich, Stefan
    Antonyuk, Sergiy
    PROCESSES, 2020, 8 (09)
  • [30] CFD-DEM Simulation of the Fluidized-bed Granulation of Food Powders
    Kim, Ju-Eun
    Chung, Young Mi
    BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, 2019, 24 (01) : 191 - 205