Leakage Rate Model of Urban Water Supply Networks Using Principal Component Regression Analysis

被引:0
|
作者
Zhiguang Niu [1 ]
Chong Wang [1 ]
Ying Zhang [2 ]
Xiaoting Wei [3 ]
Xili Gao [4 ]
机构
[1] School of Environmental Science and Engineering, Tianjin University
[2] Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University
[3] Binhai Industrial Technology Research Institute of Zhejiang University
[4] Tianjin Urban Construction Design Institute
基金
中央高校基本科研业务费专项资金资助;
关键词
Water distribution system; Leakage rate; Leakage influencing factor; Quantitative model; Principal component regression;
D O I
暂无
中图分类号
TU991.61 [给水系统的运营及检修];
学科分类号
摘要
To analyze the factors affecting the leakage rate of water distribution system, we built a macroscopic "leakage rate–leakage factors"(LRLF) model. In this model, we consider the pipe attributes(quality, diameter,age), maintenance cost, valve replacement cost, and annual average pressure. Based on variable selection and principal component analysis results, we extracted three main principle components—the pipe attribute principal component(PAPC), operation management principal component, and water pressure principal component. Of these, we found PAPC to have the most influence. Using principal component regression, we established an LRLF model with no detectable serial correlations. The adjusted R2 and RMSE values of the model were 0.717 and 2.067, respectively.This model represents a potentially useful tool for controlling leakage rate from the macroscopic viewpoint.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 50 条
  • [21] A multiple regression model for peak skin dose using principal component analysis in interventional radiology
    Kuga, Noriyuki
    Shirieda, Katsutoshi
    Hirabara, Yumi
    Kurogi, Yusuke
    Fujisaki, Ryohei
    Sun, Lue
    Morota, Koichi
    Moritake, Takashi
    Ohta, Hajime
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2025,
  • [22] PRINCIPAL COMPONENT ANALYSIS (PCA) FOR ESTIMATING CHLOROPHYLL CONCENTRATION USING FORWARD AND GENERALIZED REGRESSION NEURAL NETWORKS
    Zounemat-Kermani, Mohammad
    APPLIED ARTIFICIAL INTELLIGENCE, 2014, 28 (01) : 16 - 29
  • [23] Evaluation of water quality using principal component analysis
    An, Shuquan
    Xie, Xiufan
    Ma, Ying
    Nature Environment and Pollution Technology, 2015, 14 (04) : 855 - 858
  • [24] Prediction of Water Quality Using Principal Component Analysis
    Mahapatra, S. S.
    Sahu, Mrutyunjaya
    Patel, R. K.
    Panda, Biranchi Narayan
    WATER QUALITY EXPOSURE AND HEALTH, 2012, 4 (02): : 93 - 104
  • [25] Prediction of Water Quality Using Principal Component Analysis
    S. S. Mahapatra
    Mrutyunjaya Sahu
    R. K. Patel
    Biranchi Narayan Panda
    Water Quality, Exposure and Health, 2012, 4 : 93 - 104
  • [26] Multivariate Analysis of Micro-Raman Spectra of Thermoplastic Polyurethane Blends Using Principal Component Analysis and Principal Component Regression
    Weakley, Andrew Todd
    Warwick, P. C. Temple
    Bitterwolf, Thomas E.
    Aston, D. Eric
    APPLIED SPECTROSCOPY, 2012, 66 (11) : 1269 - 1278
  • [27] Multivariate concentration determination using principal component regression with residual analysis
    Keithley, Richard B.
    Heien, Michael L.
    Wightman, R. Mark
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2009, 28 (09) : 1127 - 1136
  • [28] Morphologic evaluation of Murrah water buffalo through regression and principal component analysis
    Sereno, J. R. B.
    Snel-Oliveira, M. V.
    Vasconcelos, S. M.
    Egito, A. A.
    Albuquerque, M. S. M.
    McManus, C.
    Souza, J. C.
    JOURNAL OF DAIRY SCIENCE, 2007, 90 : 258 - 258
  • [29] Morphologic evaluation of Murrah water buffalo through regression and principal component analysis
    Sereno, J. R. B.
    Snel-Oliveira, M. V.
    Vasconcelos, S. M.
    Egito, A. A.
    Albuquerque, M. S. M.
    McManus, C.
    Souza, J. C.
    POULTRY SCIENCE, 2007, 86 : 258 - 258
  • [30] Morphologic evaluation of Murrah water buffalo through regression and principal component analysis
    Sereno, J. R. B.
    Snel-Oliveiral, M. V.
    VasconcelOS, S. M.
    Egito, A. A.
    Albuquerque, M. S. M.
    Mcmanus, C.
    Souza, J. C.
    JOURNAL OF ANIMAL SCIENCE, 2007, 85 : 258 - 258