Horseshoe and entropy in a fractional-order unified system

被引:0
|
作者
李清都 [1 ,2 ]
陈述 [1 ]
周平 [2 ]
机构
[1] Key Laboratory of Networked Control and Intelligent Instrument of Ministry of Education,Chongqing University of Posts and Telecommunications
[2] Institute for Nonlinear Systems,Chongqing University of Posts and Telecommunications
基金
中国国家自然科学基金;
关键词
chaos; topological horseshoe; fractional-order system; generalised Lorenz system;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation.First it finds four quadrilaterals in a carefully-chosen Poincar’e section,then shows that the corresponding map is semiconjugate to a shift map with four symbols.By estimating the topological entropy of the map and the original time-continuous system,it provides a computer assisted verification on existence of chaos in this system,which is much more convincible than the common method of Lyapunov exponents.This new method can potentially be used in rigorous studies of chaos in such a kind of system.This paper may be a start for proving a given fractional-order differential equation to be chaotic.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [41] Chaos in the fractional-order Lorenz system
    Wu, Xiang-Jun
    Shen, Shi-Lei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (07) : 1274 - 1282
  • [42] The Synchronization of a fractional-order chaotic system
    Zhang Fan-di
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1488 - 1491
  • [43] Designing synchronization schemes for chaotic fractional-order unified systems
    Wang, Junwei
    Zhang, Yanbin
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1265 - 1272
  • [44] A note on the fractional-order Chen system
    Lu, JG
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 685 - 688
  • [45] A unified modeling approach for characterization of fractional-order memory elements
    Oresanya, Babajide Oluwatosin
    Si, Gangquan
    Xu, Xiang
    Gong, Jiahui
    Guo, Zhang
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2023, 51 (09) : 4029 - 4042
  • [46] Crises in a fractional-order piecewise system
    Xiaojun Liu
    Ling Hong
    Dafeng Tang
    Lixin Yang
    Nonlinear Dynamics, 2021, 103 : 2855 - 2866
  • [47] Bifurcation of a Fractional-order Complex System
    Dang, Honggang
    Yang, Xiaoya
    Liu, XiaoJun
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 145 - 148
  • [48] Synchronization of a Fractional-order Complex System
    Dang, Honggang
    Yang, Xiaoya
    Liu, XiaoJun
    Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), 2016, 77 : 154 - 157
  • [49] ELECTRONIC REALIZATION OF THE FRACTIONAL-ORDER SYSTEM
    Dorcak, Lubomir
    Terpak, Jan
    Petras, Ivo
    Valsa, Juraj
    Horovcak, Pavel
    Gonzalez, Emmanuel
    12TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, SGEM 2012, VOL. III, 2012, : 103 - 110
  • [50] Control of A Fractional-Order Arneodo System
    Zhang, Kun
    Wang, Hua
    Wang, Huitao
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 4405 - 4412