Horseshoe and entropy in a fractional-order unified system

被引:0
|
作者
李清都 [1 ,2 ]
陈述 [1 ]
周平 [2 ]
机构
[1] Key Laboratory of Networked Control and Intelligent Instrument of Ministry of Education,Chongqing University of Posts and Telecommunications
[2] Institute for Nonlinear Systems,Chongqing University of Posts and Telecommunications
基金
中国国家自然科学基金;
关键词
chaos; topological horseshoe; fractional-order system; generalised Lorenz system;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation.First it finds four quadrilaterals in a carefully-chosen Poincar’e section,then shows that the corresponding map is semiconjugate to a shift map with four symbols.By estimating the topological entropy of the map and the original time-continuous system,it provides a computer assisted verification on existence of chaos in this system,which is much more convincible than the common method of Lyapunov exponents.This new method can potentially be used in rigorous studies of chaos in such a kind of system.This paper may be a start for proving a given fractional-order differential equation to be chaotic.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [1] Horseshoe and entropy in a fractional-order unified system
    Li Qing-Du
    Chen Shu
    Zhou Ping
    CHINESE PHYSICS B, 2011, 20 (01)
  • [2] Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them
    Zhang Cheng-Fen
    Gao Jin-Feng
    Xu Lei
    ACTA PHYSICA SINICA, 2007, 56 (09) : 5124 - 5130
  • [3] Synchronization in a unified fractional-order chaotic system
    Wu Zheng-Mao
    Xie Jian-Ying
    CHINESE PHYSICS, 2007, 16 (07): : 1901 - 1907
  • [4] Circuit realization of the fractional-order unified chaotic system
    Chen Xiang-Rong
    Liu Chong-Xin
    Wang Fa-Qiang
    CHINESE PHYSICS B, 2008, 17 (05) : 1664 - 1669
  • [5] Circuit realization of the fractional-order unified chaotic system
    陈向荣
    刘崇新
    王发强
    Chinese Physics B, 2008, 17 (05) : 1664 - 1669
  • [6] Approximation of fractional-order MIMO system – a unified approach
    Swarnakar J.
    International Journal of Systems, Control and Communications, 2023, 15 (01) : 17 - 35
  • [7] Adaptive synchronization of the fractional-order unified chaotic system
    Zhang Ruo-Xun
    Yang Yang
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2009, 58 (09) : 6039 - 6044
  • [8] Topological horseshoe analysis and circuit realization for a fractional-order Lu system
    Jia, Hong-Yan
    Chen, Zeng-Qiang
    Qi, Guo-Yuan
    NONLINEAR DYNAMICS, 2013, 74 (1-2) : 203 - 212
  • [9] Topological horseshoe analysis and circuit realization for a fractional-order Lü system
    Hong-Yan Jia
    Zeng-Qiang Chen
    Guo-Yuan Qi
    Nonlinear Dynamics, 2013, 74 : 203 - 212
  • [10] Q-S synchronization of the fractional-order unified system
    Chai, Yi
    Chen, Liping
    Wu, Ranchao
    Dai, Juan
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (03): : 449 - 461