Boiler flame detection algorithm based on PSO-RBF network

被引:0
|
作者
吴进 [1 ]
GAO Yaqiong [1 ]
YANG Ling [1 ]
ZHAO Bo [1 ]
机构
[1] School of Electronic Engineering, Xi’an University of Posts and Telecommunications
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TK221 [理论]; TP18 [人工智能理论];
学科分类号
080703 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the main production tool in the industrial environment, large boilers play a vital role in the conversion and utilization of energy. Therefore, the furnace flame detection technology for boilers has always been a hot issue in the field of industrial automation and intelligence. In order to further improve the timeliness and accuracy of the flame detection network, a radial basis function(RBF)flame detection network based on particle swarm optimization(PSO) algorithm is proposed. First,the proposed algorithm initializes the speed and position parameters of the particles. Then, the parameters of the particles are mapped to the RBF flame detection network. Finally, the algorithm is iteratively updated to obtain the global optimal solution. The PSO-RBF flame detection algorithm adopts a flame sample collection method similar to back propagation(BP) flame detection algorithm, and further improves the collection efficiency. The experimental results show that the PSO-RBF flame detection network has good accuracy and faster convergence speed in the given data samples. In the flame data samples,the detection accuracy of the PSO-RBF flame detection algorithm reaches 90.5%.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [41] 基于PSO-RBF的短期电力负荷预测模型
    赵茂胜
    段嘉琪
    肖政杰
    [J]. 电子设计工程, 2023, (14) : 127 - 131
  • [42] 基于PSO-RBF神经网络的示功图识别
    任毅飞
    侯勇
    [J]. 微型机与应用., 2016, 35 (03) - 64+67
  • [43] The Application of Rotor Position Sensorless-Detection of Switched Reluctance Motor by RBF Neural Network Based On PSO Algorithm
    Tian Xiao-min
    Huang You-rui
    [J]. EPLWW3S 2011: 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES-WETLANDS-WATERSHED AND APPLICATION OF 3S TECHNOLOGY, VOL 1, 2011, : 173 - 176
  • [44] 基于PSO-RBF的建筑能耗预测模型研究
    季文娟
    顾永松
    [J]. 建筑节能(中英文), 2015, 43 (11) : 109 - 112
  • [45] 基于PSO-RBF的智能轮胎磨损检测方法
    陶海涛
    吴金伟
    张峰
    张越
    张士文
    [J]. 电气自动化, 2023, 45 (03) : 26 - 29
  • [46] PSO-RBF在大坝变形监测中的应用
    吕蓓蓓
    杨远斐
    [J]. 水电能源科学, 2012, 30 (08) : 77 - 79
  • [47] 小波包结合PSO-RBF故障测距法
    徐耀松
    冯明昊
    梁小飞
    高原
    [J]. 电力系统及其自动化学报, 2019, 31 (11) : 127 - 132
  • [48] 太阳黑子数的PSO-RBF预测模型
    李琳
    刘龙
    [J]. 科技视界, 2018, (13) : 9 - 10
  • [49] Study of strip flatness and gauge complex control based on improved PSO-RBF neural networks
    Xu, Lin
    Fang, Xiaoke
    Fang, Qichao
    Wang, Jianhui
    Gu, Shusheng
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 6397 - +
  • [50] 基于PSO-RBF神经网络的模拟电路诊断
    宋丽伟
    彭敏放
    田成来
    沈美娥
    [J]. 计算机应用研究, 2012, 29 (01) : 72 - 74