TIME ANALYTICITY FOR THE HEAT EQUATION ON GRADIENT SHRINKING RICCI SOLITONS

被引:0
|
作者
吴加勇 [1 ]
机构
[1] Department of Mathematics,Shanghai University
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
摘要
On a complete non-compact gradient shrinking Ricci soliton,we prove the analyticity in time for smooth solutions of the heat equation with quadratic exponential growth in the space variable.This growth condition is sharp.As an application,we give a necessary and sufficient condition on the solvability of the backward heat equation in a class of functions with quadratic exponential growth on shrinkers.
引用
收藏
页码:1690 / 1700
页数:11
相关论文
共 50 条
  • [31] Gradient shrinking Ricci solitons of half harmonic Weyl curvature
    Jia-Yong Wu
    Peng Wu
    William Wylie
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [32] Sharp Gaussian upper bounds for Schrödinger heat kernel on gradient shrinking Ricci solitons
    Jia-Yong Wu
    manuscripta mathematica, 2023, 172 : 1109 - 1132
  • [33] Geometry of shrinking Ricci solitons
    Munteanu, Ovidiu
    Wang, Jiaping
    COMPOSITIO MATHEMATICA, 2015, 151 (12) : 2273 - 2300
  • [34] Rigidity of shrinking Ricci solitons
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) : 461 - 466
  • [35] Degeneration of Shrinking Ricci Solitons
    Zhang, Zhenlei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (21) : 4137 - 4158
  • [36] Rigidity of shrinking Ricci solitons
    Manuel Fernández-López
    Eduardo García-Río
    Mathematische Zeitschrift, 2011, 269 : 461 - 466
  • [37] ε-REGULARITY FOR SHRINKING RICCI SOLITONS AND RICCI FLOWS
    Ge, Huabin
    Jiang, Wenshuai
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) : 1231 - 1256
  • [38] Volume growth for gradient shrinking solitons of Ricci-harmonic flow
    YANG Fei 1
    2 School of Mathematics and Physics
    3 College of Science
    Science China(Mathematics), 2012, 55 (06) : 1221 - 1228
  • [39] Rotationally symmetric shrinking and expanding gradient Kahler-Ricci solitons
    Feldman, M
    Ilmanen, T
    Knopf, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 65 (02) : 169 - 209
  • [40] An Aubin continuity path for shrinking gradient Kahler-Ricci solitons
    Cifarelli, Charles
    Conlon, Ronan J.
    Deruelle, Alix
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (815): : 229 - 307