MUCLTIVARIATE RESISTANT REGRESSION SPLINES FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA

被引:0
|
作者
SHI Peide
ZHENG Zhongguo(Department of Probability and Statistics
机构
关键词
Regression spline; M-estimator; nonparametric regression; tensor products of B-splines;
D O I
暂无
中图分类号
O211 [概率论(几率论、或然率论)];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The multivariate resistant regression spline (MURRS) method for estimatingan underlying smooth J-variate function by using noisy data is based on approximatingit with tensor products of B-splines and minimizing a sum of the ρ-functions of the residuals to obtain a robust estimator of the regression function, where the spline knots areautomatically chosen through a parallel of information criterion. When the knots are deterministically given, it is proved that the MURRS estimator achieves the optimal globalconvergence rates established by Stone under some mild conditions. Examples are givento illustrate the utility of the proposed methodology. Usually, only a few tensor productsof B-splines are enough to fit even complicated functions.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [1] THE PI METHOD FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA
    BREIMAN, L
    [J]. TECHNOMETRICS, 1991, 33 (02) : 125 - 143
  • [2] THE II METHOD FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA - DISCUSSION
    HASTIE, T
    TIBSHIRANI, R
    [J]. TECHNOMETRICS, 1991, 33 (02) : 155 - 155
  • [3] THE II METHOD FOR ESTIMATING MULTIVARIATE FUNCTIONS FROM NOISY DATA - RESPONSE
    BREIMAN, L
    [J]. TECHNOMETRICS, 1991, 33 (02) : 156 - 160
  • [4] Stepwise regression is an alternative to splines for fitting noisy data
    Burkholder, TJ
    Lieber, RL
    [J]. JOURNAL OF BIOMECHANICS, 1996, 29 (02) : 235 - 238
  • [5] Multivariate adaptive regression splines for estimating riverine constituent concentrations
    Huang, Hong
    Ji, Xiaoliang
    Xia, Fang
    Huang, Shuhui
    Shang, Xu
    Chen, Han
    Zhang, Minghua
    Dahlgren, Randy A.
    Mei, Kun
    [J]. HYDROLOGICAL PROCESSES, 2020, 34 (05) : 1213 - 1227
  • [6] A Generalized Estimating Equation Approach to Multivariate Adaptive Regression Splines
    Stoklosa, Jakub
    Warton, David I.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 245 - 253
  • [7] An incremental multivariate regression method for function approximation from noisy data
    Carozza, M
    Rampone, S
    [J]. PATTERN RECOGNITION, 2001, 34 (03) : 695 - 702
  • [8] Approximation of noisy data using multivariate splines and finite element methods
    Lamichhane, Bishnu P.
    Harris, Elizabeth
    Le Gia, Quoc Thong
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15
  • [9] Multivariate Adaptive Regression Splines Application for Multivariate Geotechnical Problems with Big Data
    Zhang W.
    Goh A.T.C.
    Zhang Y.
    [J]. Geotechnical and Geological Engineering, 2016, 34 (1) : 193 - 204
  • [10] ESTIMATING STRENGTH OF RUBBERIZED CONCRETE USING EVOLUTIONARY MULTIVARIATE ADAPTIVE REGRESSION SPLINES
    Cheng, Min-Yuan
    Cao, Minh-Tu
    [J]. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2016, 22 (05) : 711 - 720